
Measuring the Impact of Early-2025 AI on
Experienced Open-Source Developer Productivity

Joel Becker∗, Nate Rush∗, Beth Barnes, David Rein

Model Evaluation & Threat Research (METR)

Abstract

Despite widespread adoption, the impact of AI tools on software development in
the wild remains understudied. We conduct a randomized controlled trial (RCT)
to understand how AI tools at the February–June 2025 frontier affect the produc-
tivity of experienced open-source developers. 16 developers with moderate AI
experience complete 246 tasks in mature projects on which they have an aver-
age of 5 years of prior experience. Each task is randomly assigned to allow or
disallow usage of early-2025 AI tools. When AI tools are allowed, developers
primarily use Cursor Pro, a popular code editor, and Claude 3.5/3.7 Sonnet. Be-
fore starting tasks, developers forecast that allowing AI will reduce completion
time by 24%. After completing the study, developers estimate that allowing AI
reduced completion time by 20%. Surprisingly, we find that allowing AI actually
increases completion time by 19%—AI tooling slowed developers down. This
slowdown also contradicts predictions from experts in economics (39% shorter)
and ML (38% shorter). To understand this result, we collect and evaluate evi-
dence for 20 properties of our setting that a priori could contribute to the observed
slowdown effect—for example, the size and quality standards of projects, or prior
developer experience with AI tooling. Although the influence of experimental ar-
tifacts cannot be entirely ruled out, the robustness of the slowdown effect across
our analyses suggests it is unlikely to primarily be a function of our experimental
design.

1 Introduction

Software development is an important part of the modern economy, and a key domain for under-
standing and forecasting AI capabilities [1; 2]. Frontier AI systems demonstrate impressive capabil-
ities on a wide range of software benchmarks [3; 4; 5; 6; 7; 8; 9] and in experiments measuring AI’s
impact on developer productivity when completing synthetic tasks [10; 11]. However, tasks used in
these lab experiments sacrifice realism for scale and efficiency: the tasks are typically self-contained,
do not require much prior context/familiarity to understand and complete, and use algorithmic eval-
uation metrics which do not capture many important capabilities [12; 13; 14]. As a result, it can be
difficult to draw inferences from results on these evaluations about AI’s impact in practice.

To reduce the inferential gap between measurements of AI capabilities and real-world impact, one
can measure the impact of AI systems in real-world settings (i.e. field experiments). Existing field
experiments aimed at measuring AI’s impact on software development measure outcomes like num-
ber of added lines of code or number of tasks completed [15; 16; 17]. However, AI systems can
affect these outcomes without productivity actually increasing—for example, code can be more ver-
bose but functionally equivalent, and tasks can be broken up into multiple smaller tasks without the
total amount of work changing—making it challenging to interpret these results.

*Equal contribution. Correspondence to {nate, joel}@metr.org

Figure 1: Experts and study participants (experienced open-source contributors) substantially over-
estimate how much AI assistance will speed up developers—tasks take 19% more time when study
participants can use AI tools like Cursor Pro. See Appendix D for detail on speedup percentage and
confidence interval methodology.

To directly measure the impact of AI tools on developer productivity, we conduct a randomized
controlled trial by having 16 developers complete 246 tasks (2.0 hours on average) on well-known
open-source repositories (23,000 stars on average) they regularly contribute to. Each task is ran-
domly assigned to allow or disallow AI usage, and we measure how long it takes developers to
complete tasks in each condition1. Developers, who typically have tens to hundreds of hours of
prior experience using LLMs2, use AI tools considered state-of-the-art during February–June 2025
(primarily Cursor Pro with Claude 3.5/3.7 Sonnet). We collect screen recordings as they work,
providing a rich data source for analysis.

Before tasks are randomized, developers forecast that allowing AI will reduce completion time by
24%. After study participation, developers estimate that allowing AI reduced completion time by
20%. Surprisingly, we find that allowing AI actually increases completion time by 19%— devel-
opers are slower when using AI tooling. Figure 1 displays this observed slowdown in contrast with
forecasts and post-hoc developer estimates of speedup from AI. We also collect forecasts of speedup
from machine learning and economics experts in academia and industry, and find that they also sub-
stantially overestimate our observed speedup.

To understand this surprising result, we manually label 143 hours of recordings of developers’ com-
puter screens while they work (representing 29% of the total hours spent by developers), which
allows us to decompose how they spend their time when working with and without AI assistance
at a resolution of ∼ 10 seconds. We additionally collect rich statistics from source-code manage-
ment systems, interview and survey participating developers, and conduct subset analyses to better
understand the nature of the slowdown result.

Using these various sources of data, we identify 20 properties of our setting and experimental de-
sign that we hypothesize a priori may contribute to the slowdown effect. We group these factors
into four categories: a) direct productivity loss, b) experimental artifact, c) factors raising human
performance, and d) factors limiting AI performance. We find evidence that 5 factors contribute to
the slowdown effect, we find mixed/unclear/no evidence for 9 factors, and we find evidence against
6 factors contributing to the slowdown effect. Section 3.3 presents these factors at a high level, and
Appendix C discusses each factor in detail. While we can’t completely rule out the impact of exper-

1Crucially, the tasks are defined before they are randomized, limiting the impact of effects from AI assistance
unrelated to productivity (e.g., more verbose but functionally equivalent code)

2While 93% of developers have previously used LLMs, only 44% have prior experience using the Cursor
IDE.

2

https://www.cursor.com/

imental artifacts, the slowdown effect appears broadly robust across a wide range of experimental
design decisions.

That said, many of the factors we find evidence for contributing to slowdown are specific to the
setting we study—these results do not imply that current AI systems are not useful in many realistic,
economically relevant settings. Furthermore, these results do not imply that future models will not
speed up developers in this exact setting—this is a salient possibility given the rapid pace of progress
in AI capabilities recently [2]. Finally, it remains possible that further improvements to current AI
systems (e.g. better prompting/agent scaffolding, or domain-specific finetuning) could yield positive
speedup in this setting.

Nonetheless, our results reveal a large disconnect between perceived and actual AI impact on de-
veloper productivity. Despite widespread adoption of AI tools and confident predictions of positive
speedup from both experts and developers, we observe that AI actually slows down experienced
developers in this setting.

1.1 Background

Speedup, but on synthetic tasks Literature on productivity improvements on software tasks due
to AI usage broadly finds that AI tools increase productivity. Peng et al. [10] and Paradis et al. [11]
find 56% and 21% speedups on coding tasks when using AI assistance, and Weber et al. [18] finds
a 65% increase in the rate of task requirements satisfied with AI tools. However, these studies use
artificial/synthetic tasks that make it difficult to directly draw inferences about the real-world impact
of AI tools. For example, Peng et al. [10] asks developers to implement a very basic HTTP server
in JavaScript to satisfy several automatic test cases that are shown to the developers—this task is a)
unrepresentative of most software development work, and b) likely to be similar to a large amount
of LLM training data, which may unfairly advantage AI systems relative to humans.

Speedup, but with non-fixed outcome measures Other literature uses tasks found “in the wild,”
either via natural experiments [16] or randomized controlled trials [15; 17], finding 14-51% in-
creases in output productivity metrics. However, these studies use outcome measures that are not
fixed in advance—i.e. lines of code written, number of code commits, and pull requests3 (PRs)
as their key outcome measures respectively. It’s possible for AI assistance to affect the outcomes
without actually increasing productivity, e.g. by causing developers to write more verbose but func-
tionally equivalent code, or causing them to break up pull requests into smaller chunks of work.

Impressive AI benchmark results This general consensus around AI tooling’s effect on software
developer productivity is perhaps unsurprising, given the impressive apparent capabilities of frontier
AIs on challenging question-answering and agentic tasks used in popular AI benchmarks [19; 20].

Heterogeneous effects by experience One important question that emerges given these impres-
sive results is whether productivity gains are captured by individuals of all experience levels. The
canonical framework of Agrawal et al. [21] treats AI as a fall in the cost of prediction, with distri-
butional consequences depending on which complementary sub-problems the tool does not solve.
Existing empirical work on the micro-level effects of generative AI tools tends to find that ac-
cess to these tools benefits less experienced workers more, compressing performance distributions
[22; 23; 10; 24].

These heterogeneous effects motivate our focus on highly skilled open-source developers, as there
has been relatively less research in this setting.

Mixed speedup results in other domains Some literature measures the impact of frontier AI
systems in settings other than software development, for example, for CBRN uplift risk assessment,
finding mixed results with recent AI systems [25; 26; 27; 28]. Other research finds substantial
productivity increases in non-software domains [22; 23].

Understanding AI’s economic impact Finally, some literature tries to predict how AI capability
advances might a) affect the rate of AI progress (e.g. if AI systems can substitute for human AI

3See Appendix F for a primer on open-source development terminology.

3

https://en.wikipedia.org/wiki/CBRN_defense

Figure 2: Our experimental design. Tasks (referred to as issues) are defined before treatment as-
signment, screen recordings let us verify compliance (and provide a rich source of data for analysis),
and forecasts from experts and developers help us measure the gap between expectations and ob-
served results.

R&D labor), or b) broadly impact the economy. Leibowich et al. [29] interview AI researchers
about how full automation of AI R&D might alter the pace of advancement, several papers explore
the possibility of explosive economic growth via large-scale AI labor substitution [30; 31; 32], and
the economics literature includes both optimistic and skeptical perspectives on AI’s productivity
impact [33; 34; 35].

Our study primarily complements existing literature measuring the impact of AI on software devel-
opment by:

1. Testing AI models at the February–June 2025 frontier,

2. Using unfiltered, “live” open-source repository tasks rather than synthetic or cherry-picked
tasks,

3. Using a fixed outcome measure (speedup on tasks defined before randomized treatment
assignment),

4. Recruiting experienced engineers with years of expertise in the target repositories, and

5. Collecting rich data on time usage, AI code suggestions, and developers’ qualitative expe-
riences.

2 Methodology

2.1 Developers and Repositories

We recruit experienced developers from large open source repositories to work on real tasks defined
on these repositories. Developers come from a mix of our professional networks and from outreach
to active contributors to large, popular Github repositories. The developers are experienced software
engineers (typically over a decade of experience), and are regular contributors to the repositories
we use—on average, they have 5 years of experience working on their repository, representing 59%
of that repository’s lifetime, over which time they have made 1,500 commits to the repo. As an
incentive to participate, we pay developers $150/hour. Appendix G provides more detail about our
recruitment and incentivization process.

The repositories themselves are large and mature. On average, they have 23,000 stars, 1,100,000
lines of code, 4,900 forks, 20,000 commits, and 710 committers, and they broadly have very high
quality bars for code contributions. For example, one set of repository contribution guidelines con-
cludes: “Phew. While the above may be a lot to remember [..] the motivation for enforcing process
is to ensure that all code contributions meet a certain quality threshold.” Section G.7 details further
statistics about individual developers and repositories.

4

Figure 3: Real issues completed during the study from the stdlibjs and mito repositories

2.2 Experimental Design

Each developer provides a list of real issues in their repository to work on as part of this study.
Issues are typically bug reports, feature requests, or work items used to coordinate development.
They range from brief problem descriptions to detailed analyses and represent work ranging from
minutes to hours. Two example issues are shown in Figure 3. Many issues are defined before the
study period begins, but some are created during the study period.4

After collecting this issue list, developers forecast how long each issue would take if they were
to complete it both with and without AI assistance. We use these forecasts as a proxy for issue
difficulty, and to measure per-issue speedup anticipated by the developer. These issues are then
randomized to one or the other condition via a simulated fair coin flip.5 If AI is allowed, developers
can use any AI tools or models they choose, including no AI tooling if they expect it to not be helpful.
If AI is not allowed, no generative AI tooling can be used.6

Developers then work on their assigned issues in their preferred order—they are allowed to flexibly
complete their work as they normally would, and sometimes work on multiple issues at a time. After
completing an issue to their satisfaction, they submit a pull request (PR) to their repository, which
is typically reviewed by another developer. They make any changes suggested by the PR reviewer,

4About half of issues included in the study were not formally defined on the repository, and instead were
tracked separately for our experiment. Importantly, all issues represent real work that developers wanted to
contribute to their repositories, and all work completed by developers is submitted and reviewed through each
repository’s standard source-code management system (e.g. GitHub/GitLab). Developers are asked to con-
tribute issues taking a maximum of two hours, or to break up issues taking longer into multiple issues.

525 issues early in the study were randomized differently. We show that results are not sensitive to inclu-
sion/exclusion of these issues in Section C.3.4, and we include these issues for statistical power.

6AI-based tab autocomplete is disallowed in the AI-disallowed condition if it uses LLMs (e.g. GitHub
Copilot) but allowed otherwise. Search engines, which sometimes use AI under the hood, remain allowed in
the AI-disallowed condition.

5

and merge their completed PR into the repository7. As the repositories included in the study have
very high quality and review standards, merged PRs rarely contain mistakes or flaws. Finally, they
self-report how long they spend working on each issue before and after PR review.

See Section G.2 for the full written instructions given to developers before they start working.

2.2.1 AI Tools and Training

Two popular means of using modern large language model (LLM) based AI tools are via web-based
user interfaces (e.g. chatgpt.com) and the integrated development environment (IDE) Cursor Pro
(which we provide a subscription for). Cursor is a fork of the widely used VSCode IDE with near-
identical features, that additionally includes extra AI features like a language model chat interface,
and an AI agent tool that can search and edit files, run arbitrary bash commands, prompt/ask the
user for more details when relevant, and iterate/debug programs without constant input from users.
Developers have a range of experience using AI tools: 93% have prior experience with tools like
ChatGPT, but only 44% have experience using Cursor.

We provide developers with Cursor Pro subscriptions and conduct live basic training, validating that
developers are able to prompt Cursor effectively to edit files in their own codebase, accept changes,
and revert to previous checkpoints. However, we don’t require that they use Cursor specifically.
Developers working on issues for which AI is allowed can use any AI tools of their choosing, or no
AI tools if they prefer. See Section F.2 for further information on these two methods of accessing
AI assistance, and Appendix G for more detail about our training and onboarding process.

2.2.2 Data Collection

Contributors completed issues largely as they would outside of our experiment, with a few excep-
tions: they typically record their screen as they work (providing us with a source of rich data on their
AI usage and working patterns), when using AI they often use the Cursor IDE, which sometimes dif-
fers from their normal development environment (e.g. neovim, PyCharm), and they record details of
their working patterns after each issue is completed. Broadly, developers reported that they were not
significantly inconvenienced or affected by these differences compared to their normal workflows
(see section Section 3.3 for discussion of how experimental design may affect results). Developers
self-report the length of time they spend working on each issue before and after PR review.

2.3 Effect Estimation

We aim to measure the percentage change in issue time to completion due to AI, defined as:

S =
E[completion time with AI allowed]

E[completion time with AI disallowed]
− 1

A value of -50% would indicate issues assigned to AI-allowed taking half the time of issues assigned
to AI-disallowed; 0% would indicate that issues take the same time to complete with and without
AI-allowed; 100% would indicate that issues assigned to AI-allowed take twice as long as issues
assigned to AI-disallowed. For convenience and clarity, we typically report the absolute value of S,
and colloquially refer to negative values of as speedup, and positive values as slowdown8

We use the total implementation time (including both pre- and post-pull request review time) devel-
opers self-report spending on each issue to estimate the percentage change in issue completion time
due to AI. A small number of issues do not end up getting reviewed/merged for various reasons—
we impute the post-review implementation time of these issues with the mean post-review time
per treatment condition. Section C.3.4 shows that our results are robust to the specific imputation
method used.

We estimate S via a log-linear regression for total implementation time, incorporating estimates of
issue difficulty to reduce noise in our estimate. We also use adapted versions of this regression when

7Not all PRs end up getting merged by the end of the study period—see Section C.3.4 for discussion of how
this may affect results.

8This is a mild abuse of language, because speedup and slowdown refer to rates, while the quantity we
actually estimate and report is the percentage change in time from AI.

6

https://chatgpt.com
https://www.cursor.com/

examining how performance varies in different subsets of the data (to efficiently account for any
post-randomization issue difficulty imbalances that may be more pronounced within subsets). See
Appendix D for details of the regression approach used.

2.4 Supplementary Data Collection

Developer Forecasts and Post hoc Estimates Before randomizing each issue to either AI-allowed
or AI-disallowed, we ask developers to forecast how long they expect each issue to take if they are
allowed to use AI assistance, and if they are disallowed from using AI. This provides a measure
of issue difficulty independent of random treatment assignment, and enables us to assess developer
calibration and expectations regarding the usefulness of AI assistance for their work.

After the study’s conclusion, we ask developers to estimate post hoc how much AI tooling affected
the time it took them to complete issues. This helps us understand the relationship between individ-
uals’ beliefs about AI helpfulness and our measured effects.

The detailed instructions given to developers for per-issue forecasts and exit surveys are available in
Section G.2.

Expert Forecasts We solicit forecasts from experts in machine learning and economics in order
to compare our results against expert prior expectations regarding AI capabilities [36]. Machine
learning experts are a mix of industry professionals from frontier AI labs, and academics from
universities with leading graduate computer science programs. Economics experts are primarily
academics and PhD students from universities with leading economics graduate programs. See
Section E.5 for summary statistics of expert forecasts by expert group.

Experts are given detailed information about our study design, repositories participating in our ex-
periment, and the proportion of developers who have prior experience with AI tooling (Section G.9).
They then report their prediction of our point estimate for E[time with AI disallowed]

E[time with AI allowed]
9.

To incentivize experts to make accurate forecasts, we offer to pay max(0, $50× (1− (true answer−
guessed answer)2)) for their point estimates.1011

Cursor Analytics Data We collect per-developer analytics data from Cursor’s analytics dash-
board, for the 13 developers we provide Cursor Pro subscriptions to. For each developer, we collect
their most-used model and the number of suggested and accepted lines of AI-generated code.

Exit Interviews and Surveys After the study’s conclusion, we conduct exit interviews and surveys
with all developers to assess where they found AI helpful, what strategies they used to effectively
elicit work from AI, whether they felt they improved at using AI tooling over the course of the
study, and to estimate how much they were sped up by AI during the study. Full details of the exit
interviews are available in Section G.5.1.

Qualitative Evidence Throughout the study we collect qualitative evidence from developers, to
form a more comprehensive understanding of their experiences using AI tools. Developers are in-
structed to take detailed notes regarding their experience and usage of AI tools, and we use inductive
coding—where we iteratively read through the data to identify recurring patterns, create and refine
categories as they emerge, and reorganize excerpts until stable themes develop—to cluster excerpts
from these notes. Qualitative results in Section 3.3 (particularly quotes from developers) were col-
lected primarily with this methodology. However, to investigate initial hypotheses, we often ask
developers probing/targeted questions, so we cannot rule out bias from this type of qualitative evi-
dence.

9Note that the estimate we use for Figure 1 is transformed to represent E[T | AI=1]
E[T | AI=0]

− 1. It is not necessarily

true that forecasters’ belief about the point estimate of E[T | AI=1]
E[T | AI=0]

is equal to the reciprocal of their belief about

the point estimate of E[T | AI=0]
E[T | AI=1]

.
10Approximately one-third of forecasters are offered a maximum of $100 rather than $50.
11Taking a maximum with 0 makes our scoring rule improper [37]—their reward is not necessarily maxi-

mized at their true belief. We use this scoring rule for simplicity and clarity.

7

Figure 4: Left: Raw average forecasted implementation times. Right: Raw average observed im-
plementation times. The ratio of observed implementation times gives a more extreme slowdown
estimate than regression-based estimates (Section D.1) because AI-allowed issues are forecasted
(importantly, before treatment assignment) by developers to take slightly longer, which the regres-
sion corrects for. Both: Section D.4 describes confidence intervals around ratios of average times.

Fine-Grained Screen Recording Activity Labels To compare how developers spend their time
with and without AI assistance, we manually label a subset of 128 screen recordings with fine-
grained activity labels, totaling 143 hours of video. In results based on these labeled screen record-
ings, we filter to remove issues where we find cheating, issues where the screen recording are broken
for >10% of recording time, and issues with a >20% discrepancy between self-reported time and
the recording time. This results in 74 recordings representing 84 hours of video for further analysis.

We label whether developers are: actively writing code, testing and debugging their code, reading
or searching for information, using Git or managing their environment, prompting an AI system,
waiting on an AI system to generate output, reviewing AI outputs, or idling/doing other miscella-
neous work. Each high-level label is further broken down into one of 27 fine-grained categories.
Labels have a resolution of ∼ 10 seconds. Section G.8 describes the instructions and process used
for labeling screen recordings.

3 Results

Developers complete 136 issues with AI-allowed and 110 issues with AI-disallowed. Section G.7
shows the number of issues completed across repositories and developers, respectively. We find that
when developers use AI tools, they implement issues in 19% more time on average (Figure 1), and
nearly all quantiles of observed implementation time see AI-allowed issues taking longer (Figure 5).
That is, developers are slower when using AI is allowed. Colloquially, we refer to this result that
issues with AI-allowed take longer than issues with AI-disallowed as slowdown.

3.1 Forecasts

Developer Forecasts and Post hoc Estimates Before developers complete each issue, they fore-
cast how long they expect them to take with and without AI assistance. On average, they forecast
speedup of 24%. Interestingly, after the experiment they post-hoc estimate that they were sped-up
by 20% when using AI is allowed—after they used AI assistance, they estimate similar speedup as

8

Figure 5: Empirical cumulative distribution functions of observed implementation times. Percentile
ordering is calculated separately for each treatment group.

before, despite the fact that they are in fact slowed down by 19% (Figure 1). Figure 4 displays the
raw average forecasted and observed implementation times12.

Despite developers forecasting speedup from AI (while they are slowed down), developer forecasts
are informative about completion time—the Pearson correlation between the time developers fore-
cast AI-allowed issues taking and the actual time they take is 0.64, and the correlation between the
time developers forecast AI-disallowed issues taking and the actual time time they take is 0.59. This
suggests that developers are broadly well-calibrated on the relative amount of time that issues will
take, but their expectations regarding the usefulness of AI assistance are reversed.

Expert Forecasts Speedup forecasts from 34 economics experts and 54 machine learning experts
overestimate speedup even more drastically than developers, predicting AI will lead to decreases
in implementation time of 39% and 38%, respectively (Figure 1). We show distributions of expert
forecasts in Section E.5.

3.2 Activity Labels

On a subset of 74 issues for which we have valid screen recordings, we manually label the activities
developers engage in while they work. Figure 6 shows the percentage of time developers spend
for each type of issue (AI-allowed or AI-disallowed). When allowed to use AI, developers spend a
smaller proportion of their time actively coding and reading/searching for information. Instead, they
spend time reviewing AI outputs, prompting AI systems, and waiting for AI generations. Interest-
ingly, they also spend a somewhat higher proportion of their time idle, where their screen recording
doesn’t show any activity. Section E.4 shows the number of minutes spent on average in each cate-
gory (instead of percentage time spent), as well as the distributions of labels broken down into more
fine-grained activities.

12The raw percentage difference in implementation times between AI-allowed and AI-disallowed issues is
34%, which is larger ini absolute value than the 19% slowdown estimated using the regression specified in
Section D.1. This is true because AI-allowed issues ended up being slightly more difficult than AI-disallowed
issues after randomization, as measured by the forecasted AI-disallowed times (not statistically significant; see
Table 4). Our regression accounts for this, while this simple ratio estimator does not. See Figure 13 for results
implied by alternative estimators.

9

Figure 6: On the subset of labeled screen recordings, when AI is allowed, developers spend less
time actively coding and searching for/reading information, and instead spend time prompting AI,
waiting on and reviewing AI outputs, and idle. Figure 18 shows the absolute (average) minutes spent
in each category, and Figure 20 presents these results broken down into 27 fine-grained categories.

3.3 Factor Analysis

Given the surprising nature of this result, we investigate 20 potential contributing factors that may
contribute to developers spending more time on tasks when AI usage is allowed. We group these
factors into four categories:

• Direct productivity loss (Ý): mechanisms by which the use of AI tools actively slows
down development.

• Experimental artifact (e): confounders from our experimental setup or procedures that
may introduce biases, or limit the external validity.

• Raises developer performance (): attributes of the issues, repositories, or setting that
improve developer ability relative to AI.

• Limits AI performance (Æ): attributes of the issues, repositories, or AI/environment tool-
ing that diminish AI’s effectiveness relative to developers.

Using entry and exit surveys, screen recordings, developer interviews, and subset analyses we
find qualitative and quantitative evidence that 5 of the 20 factors contribute to slowdown, we find
mixed/unclear/no evidence that 9 of the factors contribute to slowdown, and we find evidence against
6 of the factors contributing. However, we strongly caution against over-indexing on the basis of any
individual pieces of evidence, as we are not powered for statistically significant multiple compar-
isons when subsetting our data. This analysis is intended to provide speculative, suggestive evidence
about the mechanisms behind slowdown. Appendix C discusses the evidence for/against each factor
in Table 1.

4 Discussion

We provide evidence that recent AI systems slow down experienced open-source developers with
moderate AI experience completing real issues on large, popular repositories they are highly familiar
with. This observed slowdown serves as some evidence that AI capabilities in the wild may be lower
than results on commonly used benchmarks may suggest.

Furthermore, we show that both experts and developers drastically overestimate the usefulness of AI
on developer productivity, even after they have spent many hours using the tools. This underscores

10

Factors likely to contribute to slowdown

Factor Type Relevant Observations

Over-optimism about AI usefulness
(C.1.1)

Ý • Developers forecast AI will decrease implementation time by 24%
• Developers post hoc estimate AI decreased implementation time by 20%

High developer familiarity with reposito-
ries (C.1.2)

 • Developers slowed down more on issues they are more familiar with
• Developers report that their experience makes it difficult for AI to help them
• Developers average 5 years experience and 1,500 commits on repositories

Large and complex repositories (C.1.3) Æ • Developers report AI performs worse in large and complex environments
• Repositories average 10 years old with >1,100,000 lines of code

Low AI reliability (C.1.4) Æ • Developers accept <44% of AI generations
• Majority report making major changes to clean up AI code
• 9% of time spent reviewing/cleaning AI outputs

Implicit repository context (C.1.5) Æ • Developers report AI doesn’t utilize important tacit knowledge or context

Factors with unclear effect on slowdown

Factor Type Relevant Observations

Experimentally driven overuse of AI
(C.2.1)

e • Developers sometimes report overuse due to experiment
• Similar slowdown from developers reporting overuse vs. normal use

Unrepresentative task distribution
(C.2.2)

e • Developers report issues are standard but on the shorter side
• Excludes non-programming tasks developers complete in normal work

AI increasing issue scope (C.2.3) e • Developers who report scope creep see less slowdown
• Mixed developer reports on AI’s impact on scope
• 47% more lines of code per forecasted hour in AI-allowed issues

Bias from issue completion order (C.2.4) e • Developers decide order post randomization

Trading speed for ease (C.2.5) Ý • Some developers report using AI is less effortful
• High developer retention on Cursor

Low quality initial pull requests (C.2.6) Ý • Minor difference in mean post-review times between conditions
• Qualitatively similar PR quality between conditions

Below-average use of AI tools (C.2.7) Æ • Similar slowdown for developers with prior Cursor experience
• No clear learning effect across first 30-50 hours of Cursor usage
• Developers appear qualitatively in distribution for Cursor Pro users

AI generation latency (C.2.8) Æ • Mixed developer reports that waiting on AI generations was important
• Developers spend 4% of time waiting on AI generations

Suboptimal elicitation (C.2.9) Æ • Developers use Cursor agents/chat in majority of AI-allowed issues
• Developers sample few tokens from models
• But existing literature finding positive speedup also uses few tokens
• Unused elicitation strategies could improve AI reliability

Factors unlikely to contribute to slowdown

Factor Type Relevant Observations

Unfamiliar development environment
(C.3.1)

e • Most developers use comparable IDEs between treatment conditions
• These developers still see slowdown of 24%
• No clear learning effects across first 30-50 hours of Cursor usage

Cheating or under-use of AI (C.3.2) e • AI used in all but 16.4% of allowed cases with labeled screen recordings
• Only 3 cheating instances in 54 screen recordings

Issue dropout (C.3.3) e • Developers with no accidental dropout see similar slowdown
• Issues dropped intentionally are qualitatively unbiased

Non-robust outcome measure (C.3.4) e • Alternative outcome measures yield similar slowdown

Non-robust estimator (C.3.5) e • Alternative estimators yield similar slowdown

Non-frontier model usage (C.3.6) Æ • Developers mostly use (at the time) frontier models

Table 1: Summary of factors that may a priori explain or contribute to slowdown, grouped by the
state of evidence for or against their impact on the slowdown effect. are factors that raise human
performance, Æ are factors that limit AI performance, e are experimental artifacts that may bias/-
confound results, and Ý are factors that directly contribute to productivity losses.

11

the importance of conducting field experiments with robust outcome measures, compared to relying
solely on expert forecasts or developer surveys.

4.1 Key Caveats

Setting-specific factors We caution readers against overgeneralizing on the basis of our results.
The slowdown we observe does not imply that current AI tools do not often improve developer’s
productivity—we find evidence that the high developer familiarity with repositories and the size and
maturity of the repositories both contribute to the observed slowdown, and these factors do not apply
in many software development settings. For example, our results are consistent with small greenfield
projects or development in unfamiliar codebases seeing substantial speedup from AI assistance.

AI-specific factors We expect that AI systems that have higher fundamental reliability, lower
latency, and/or are better elicited (e.g. via more inference compute/tokens, more skilled prompt-
ing/scaffolding, or explicit fine-tuning on repositories) could speed up developers in our setting (i.e.
experienced open-source developers on large repositories).

Agents can make meaningful progress on issues We have preliminary evidence (forthcoming)
that fully autonomous AI agents using Claude 3.7 Sonnet can often correctly implement the core
functionality of issues on several repositories that are included in our study, although they fail to
fully satisfy all requirements (typically leaving out important documentation, failing linting/styling
rules, and leaving out key unit or integration tests). This represents immense progress relative to the
state of AI just 1-2 years ago, and if progress continues apace (which is a priori at least plausible,
although not guaranteed), we may soon see significant speedup in this setting.

5 Acknowledgments

We thank the open-source developers who participated in this study. Your hard work, diligent
record keeping, and excellent software made it a pleasure to work with you. Thanks to Aaron
Diamond-Reivich, Alan Akbik, Domenic Denicola, Dens Sumesh, Jaden Fiotto-Kaufman, João
Gante, Liam DeVoe, Matthew Pickering, Muhammad Haris, Philipp Burckhardt, Quentin Anthony,
Ruben Bloom, Sam Derbyshire, and other participating developers.

We thank the following reviewers for feedback on the experimental design and paper drafts:
Adrien Ecoffet, Alexander Barry, Ali Merali, Ajeya Cotra, Andres Campero, Andrey Fradkin, Basil
Halperin, Cozmin Ududec, Eli Lifland, Ernest Davis, Gregory Sun, Hjalmar Wijk, James Requeima,
Jide Alaga, Josh Jacobson, Lawrence Chan, Megan Kinniment, Michael Sklar, Neev Parikh, Rif A.
Saurous, Rob Miles, Ryan Greenblatt, Seraphina Nix, Sydney Von Arx, Thomas Kwa, and Tom
Cunningham.

We thank the following individuals for help with data collection: Adam Hanson, Amy Ngo, Chris
Canal, Jebastin Nadar, Luis Slyfield, and Martin Milbradt.

We thank the Sami Jawar, Thomas Broadley for technical support throughout the project.

We thank the following for their operational support through the project: Bhaskar Chaturvedi, Emma
Abele, Kit Harris, Kris Chari, Kyle Scott, Rebecca Baron, and Rae She.

The authors thank Stephanie He for graphic design contributions.

The authors especially thank Aron Lajko, Chris Painter, Jasmine Dhaliwal, and Steve Newman for
close review, feedback, and support throughout the project.

12

References

[1] Nestor Maslej, Loredana Fattorini, Raymond Perrault, Yolanda Gil, Vanessa Parli, Njenga Kar-
iuki, Emily Capstick, Anka Reuel, Erik Brynjolfsson, John Etchemendy, Katrina Ligett, Terah
Lyons, James Manyika, Juan Carlos Niebles, Yoav Shoham, Russell Wald, Tobi Walsh, Armin
Hamrah, Lapo Santarlasci, Julia Betts Lotufo, Alexandra Rome, Andrew Shi, and Sukrut
Oak. Artificial intelligence index report 2025, 2025. URL https://arxiv.org/abs/2504.
07139.

[2] Thomas Kwa, Ben West, Joel Becker, Amy Deng, Katharyn Garcia, Max Hasin, Sami Jawhar,
Megan Kinniment, Nate Rush, Sydney Von Arx, Ryan Bloom, Thomas Broadley, Haoxing Du,
Brian Goodrich, Nikola Jurkovic, Luke Harold Miles, Seraphina Nix, Tao Lin, Neev Parikh,
David Rein, Lucas Jun Koba Sato, Hjalmar Wijk, Daniel M. Ziegler, Elizabeth Barnes, and
Lawrence Chan. Measuring ai ability to complete long tasks, 2025. URL https://arxiv.
org/abs/2503.14499.

[3] Hjalmar Wijk, Tao Lin, Joel Becker, Sami Jawhar, Neev Parikh, Thomas Broadley, Lawrence
Chan, Michael Chen, Josh Clymer, Jai Dhyani, Elena Ericheva, Katharyn Garcia, Brian
Goodrich, Nikola Jurkovic, Holden Karnofsky, Megan Kinniment, Aron Lajko, Seraphina Nix,
Lucas Sato, William Saunders, Maksym Taran, Ben West, and Elizabeth Barnes. Re-bench:
Evaluating frontier ai r&d capabilities of language model agents against human experts, 2025.
URL https://arxiv.org/abs/2411.15114.

[4] Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays,
Giulio Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and Aleksander
Madry. Mle-bench: Evaluating machine learning agents on machine learning engineering,
2025. URL https://arxiv.org/abs/2410.07095.

[5] Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin,
Rachel Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia
Glaese, and Tejal Patwardhan. Paperbench: Evaluating ai’s ability to replicate ai research,
2025. URL https://arxiv.org/abs/2504.01848.

[6] Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng, Dayiheng Liu, An Yang, Xuancheng
Ren, Bofei Gao, Yibo Miao, Yunlong Feng, Zekun Wang, Jian Yang, Zeyu Cui, Yang Fan,
Yichang Zhang, Binyuan Hui, and Junyang Lin. Codeelo: Benchmarking competition-level
code generation of llms with human-comparable elo ratings, 2025. URL https://arxiv.
org/abs/2501.01257.

[7] Samuel Miserendino, Michele Wang, Tejal Patwardhan, and Johannes Heidecke. Swe-lancer:
Can frontier llms earn $1 million from real-world freelance software engineering?, 2025. URL
https://arxiv.org/abs/2502.12115.

[8] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

[9] David Rein, Joel Becker, Amy Deng, Seraphina Nix, Chris Canal, Daniel O’Connel, Pip
Arnott, Ryan Bloom, Thomas Broadley, Katharyn Garcia, Brian Goodrich, Max Hasin, Sami
Jawhar, Megan Kinniment, Thomas Kwa, Aron Lajko, Nate Rush, Lucas Jun Koba Sato, Syd-
ney Von Arx, Ben West, Lawrence Chan, and Elizabeth Barnes. Hcast: Human-calibrated
autonomy software tasks, 2025. URL https://arxiv.org/abs/2503.17354.

[10] Sida Peng, Eirini Kalliamvakou, Peter Cihon, and Mert Demirer. The impact of ai on developer
productivity: Evidence from github copilot, 2023. URL https://arxiv.org/abs/2302.
06590.

[11] Elise Paradis, Kate Grey, Quinn Madison, Daye Nam, Andrew Macvean, Vahid Meimand,
Nan Zhang, Ben Ferrari-Church, and Satish Chandra. How much does ai impact development
speed? an enterprise-based randomized controlled trial, 2024. URL https://arxiv.org/
abs/2410.12944.

13

https://arxiv.org/abs/2504.07139
https://arxiv.org/abs/2504.07139
https://arxiv.org/abs/2503.14499
https://arxiv.org/abs/2503.14499
https://arxiv.org/abs/2411.15114
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2504.01848
https://arxiv.org/abs/2501.01257
https://arxiv.org/abs/2501.01257
https://arxiv.org/abs/2502.12115
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2503.17354
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2302.06590
https://arxiv.org/abs/2410.12944
https://arxiv.org/abs/2410.12944

[12] Inioluwa Deborah Raji, Emily M. Bender, Amandalynne Paullada, Emily Denton, and Alex
Hanna. AI and the everything in the whole wide world benchmark. CoRR, abs/2111.15366,
2021. URL https://arxiv.org/abs/2111.15366.

[13] Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Ab-
basi, Alham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, Anthony
DiPofi, Julen Etxaniz, Benjamin Fattori, Jessica Zosa Forde, Charles Foster, Jeffrey Hsu,
Mimansa Jaiswal, Wilson Y. Lee, Haonan Li, Charles Lovering, Niklas Muennighoff, Ellie
Pavlick, Jason Phang, Aviya Skowron, Samson Tan, Xiangru Tang, Kevin A. Wang, Genta In-
dra Winata, François Yvon, and Andy Zou. Lessons from the trenches on reproducible evalu-
ation of language models, 2024. URL https://arxiv.org/abs/2405.14782.

[14] Ernest Davis. Benchmarks for automated commonsense reasoning: A survey, 2023. URL
https://arxiv.org/abs/2302.04752.

[15] Leonardo Gambacorta, Han Qiu, Shuo Shan, and Daniel M Rees. Generative AI and labour
productivity: a field experiment on coding, volume 1208. Bank for International Settlements,
Monetary and Economic Department, 2024.

[16] Doron Yeverechyahu, Raveesh Mayya, and Gal Oestreicher-Singer. The impact of large
language models on open-source innovation: Evidence from github copilot, 2025. URL
https://ssrn.com/abstract=4684662.

[17] Zheyuan Cui, Mert Demirer, Sonia Jaffe, Leon Musolff, Sida Peng, and Tobias Salz. The
effects of generative ai on high-skilled work: Evidence from three field experiments with soft-
ware developers, June 2025. URL https://ssrn.com/abstract=4945566.

[18] Thomas Weber, Maximilian Brandmaier, Albrecht Schmidt, and Sven Mayer. Significant pro-
ductivity gains through programming with large language models. Proc. ACM Hum.-Comput.
Interact., 8(EICS), June 2024. doi: 10.1145/3661145. URL https://doi.org/10.1145/
3661145.

[19] OpenAI. OpenAI o3 and o4-mini System Card. https://cdn.openai.com/pdf/
2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf,
2025. [Accessed 23-06-2025].

[20] Anthropic. Anthropic Claude 4 System Card. https://www-cdn.anthropic.com/
6be99a52cb68eb70eb9572b4cafad13df32ed995.pdf, 2025. [Accessed 23-06-2025].

[21] Ajay Agrawal, Joshua S. Gans, and Avi Goldfarb. Artificial intelligence: The ambiguous labor
market impact of automating prediction. Journal of Economic Perspectives, 33(2):31–50, May
2019. doi: 10.1257/jep.33.2.31. URL https://www.aeaweb.org/articles?id=10.1257/
jep.33.2.31.

[22] Erik Brynjolfsson, Danielle Li, and Lindsey Raymond. Generative ai at work*. The Quarterly
Journal of Economics, 140(2):889–942, 02 2025. ISSN 0033-5533. doi: 10.1093/qje/qjae044.
URL https://doi.org/10.1093/qje/qjae044.

[23] Shakked Noy and Whitney Zhang. Experimental evidence on the productivity effects of gener-
ative artificial intelligence. Science, 381(6654):187–192, 2023. doi: 10.1126/science.adh2586.
URL https://www.science.org/doi/abs/10.1126/science.adh2586.

[24] Jonathan H. Choi and Daniel Schwarcz. Ai assistance in legal analysis: An empirical study.
Journal of Legal Education, 73(2), 2025. URL https://jle.aals.org/home/vol73/
iss2/5/.

[25] Anthropic. Responsible scaling policy evaluations report – claude 3 opus. Technical
report, Anthropic, 2024. URL https://cdn.sanity.io/files/4zrzovbb/website/
210523b8e11b09c704c5e185fd362fe9e648d457.pdf. Accessed June 2025.

[26] C. Mouton, Caleb Lucas, and Ella Guest. The operational risks of ai in large-
scale biological attacks. Research report, RAND Corporation, Santa Monica,
2024. URL https://www.rand.org/content/dam/rand/pubs/research_reports/
RRA2900/RRA2977-2/RAND_RRA2977-2.pdf.

14

https://arxiv.org/abs/2111.15366
https://arxiv.org/abs/2405.14782
https://arxiv.org/abs/2302.04752
https://ssrn.com/abstract=4684662
https://ssrn.com/abstract=4945566
https://doi.org/10.1145/3661145
https://doi.org/10.1145/3661145
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://www-cdn.anthropic.com/6be99a52cb68eb70eb9572b4cafad13df32ed995.pdf
https://www-cdn.anthropic.com/6be99a52cb68eb70eb9572b4cafad13df32ed995.pdf
https://www.aeaweb.org/articles?id=10.1257/jep.33.2.31
https://www.aeaweb.org/articles?id=10.1257/jep.33.2.31
https://doi.org/10.1093/qje/qjae044
https://www.science.org/doi/abs/10.1126/science.adh2586
https://jle.aals.org/home/vol73/iss2/5/
https://jle.aals.org/home/vol73/iss2/5/
https://cdn.sanity.io/files/4zrzovbb/website/210523b8e11b09c704c5e185fd362fe9e648d457.pdf
https://cdn.sanity.io/files/4zrzovbb/website/210523b8e11b09c704c5e185fd362fe9e648d457.pdf
https://www.rand.org/content/dam/rand/pubs/research_reports/RRA2900/RRA2977-2/RAND_RRA2977-2.pdf
https://www.rand.org/content/dam/rand/pubs/research_reports/RRA2900/RRA2977-2/RAND_RRA2977-2.pdf

[27] Aaron Grattafiori et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

[28] Tejal Patwardhan, Kevin Liu, Todor Markov, Neil Chowdhury, Dillon Leet, Natalie
Cone, Caitlin Maltbie, Joost Huizinga, Carroll Wainwright, Shawn (Froggi) Jackson,
Steven Adler, Rocco Casagrande, and Aleksander Madry. Building an early warn-
ing system for LLM-aided biological threat creation. https://openai.com/index/
building-an-early-warning-system-for-llm-aided-biological-threat-creation/,
January 2024. Accessed: 2025-06-25.

[29] Jared Leibowich, Nikola Jurkovic, and Tom Davidson. Could advanced ai accelerate the pace
of ai progress? interviews with ai researchers, 2024. URL https://ssrn.com/abstract=
5115692.

[30] Ege Erdil and Tamay Besiroglu. Explosive growth from ai automation: A review of the argu-
ments, 2024. URL https://arxiv.org/abs/2309.11690.

[31] Ege Erdil, Andrei Potlogea, Tamay Besiroglu, Edu Roldan, Anson Ho, Jaime Sevilla, Matthew
Barnett, Matej Vrzla, and Robert Sandler. Gate: An integrated assessment model for ai au-
tomation, 2025. URL https://arxiv.org/abs/2503.04941.

[32] Tom Davidson. What a compute-centric framework says about
takeoff speeds. https://www.openphilanthropy.org/research/
what-a-compute-centric-framework-says-about-takeoff-speeds/, June 2023.
Open Philanthropy. Accessed: 2025-06-25.

[33] Daron Acemoglu. The simple macroeconomics of ai. Economic Policy, 40(121):13–58, 08
2024. ISSN 0266-4658. doi: 10.1093/epolic/eiae042. URL https://doi.org/10.1093/
epolic/eiae042.

[34] Ajay Agrawal, Joshua Gans, and Avi Goldfarb. Economic policy for artificial intelligence.
Innovation Policy and the Economy, 19:139–159, 2019. doi: 10.1086/699935. URL https:
//doi.org/10.1086/699935.

[35] Jason Furman and Robert Seamans. AI and the Economy, pages 161–191. University of
Chicago Press, May 2018. doi: 10.1086/699936. URL http://www.nber.org/chapters/
c14099.

[36] Stefano DellaVigna, Nicholas Otis, and Eva Vivalt. Forecasting the results of experiments:
Piloting an elicitation strategy. AEA Papers and Proceedings, 110:75–79, May 2020. doi: 10.
1257/pandp.20201080. URL https://www.aeaweb.org/articles?id=10.1257/pandp.
20201080.

[37] Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and es-
timation. Journal of the American Statistical Association, 102(477):359–378, 2007. doi:
10.1198/016214506000001437. URL https://doi.org/10.1198/016214506000001437.

[38] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github issues?
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=VTF8yNQM66.

[39] Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts, 2023. URL
https://arxiv.org/abs/2307.03172.

[40] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute
optimally can be more effective than scaling model parameters, 2024. URL https://arxiv.
org/abs/2408.03314.

[41] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in lan-
guage models, 2023. URL https://arxiv.org/abs/2203.11171.

15

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openai.com/index/building-an-early-warning-system-for-llm-aided-biological-threat-creation/
https://openai.com/index/building-an-early-warning-system-for-llm-aided-biological-threat-creation/
https://ssrn.com/abstract=5115692
https://ssrn.com/abstract=5115692
https://arxiv.org/abs/2309.11690
https://arxiv.org/abs/2503.04941
https://www.openphilanthropy.org/research/what-a-compute-centric-framework-says-about-takeoff-speeds/
https://www.openphilanthropy.org/research/what-a-compute-centric-framework-says-about-takeoff-speeds/
https://doi.org/10.1093/epolic/eiae042
https://doi.org/10.1093/epolic/eiae042
https://doi.org/10.1086/699935
https://doi.org/10.1086/699935
http://www.nber.org/chapters/c14099
http://www.nber.org/chapters/c14099
https://www.aeaweb.org/articles?id=10.1257/pandp.20201080
https://www.aeaweb.org/articles?id=10.1257/pandp.20201080
https://doi.org/10.1198/016214506000001437
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2203.11171

[42] Stack Overflow. 2024 developer survey: Technology - integrated development en-
vironment, 2024. URL https://survey.stackoverflow.co/2024/technology#
1-integrated-development-environment. Accessed: June 26, 2025.

16

https://survey.stackoverflow.co/2024/technology#1-integrated-development-environment
https://survey.stackoverflow.co/2024/technology#1-integrated-development-environment

A Author contributions

Joel Becker and Nate Rush designed, implemented, and led the project.

Beth Barnes gave feedback and guidance on the project.

David Rein contributed substantially to the writing and framing of the results.

B Extended Discussion

We do not provide evidence that: Clarification

AI systems do not currently speed up many
or most software developers

We do not claim that our developers or reposito-
ries represent a majority or plurality of software
development work

AI systems do not speed up individuals or
groups in domains other than software de-
velopment

We only study software development

AI systems in the near future will not speed
up developers in our exact setting

Progress is difficult to predict, and there has been
substantial AI progress over the past five years [2]

There are not ways of using existing AI
systems more effectively to achieve posi-
tive speedup in our exact setting

Cursor does not sample many tokens from
LLMs, it may not use optimal prompting/s-
caffolding, and domain/repository-specific
training/finetuning/few-shot learning could yield
positive speedup

Table 2: Potential misconceptions about our work: what our evidence does not demonstrate about
AI and developer productivity.

Potential Misreadings of Results Given both the importance of understanding AI capabili-
ties/risks, and the diversity of perspectives on these topics, we feel it’s important to forestall potential
misunderstandings or over-generalizations of our results. We list claims that we do not provide evi-
dence for in Table 2.

Paper Result AI ≥ GPT-
4?

Non-
synthetic
tasks

Experienced,
high-
familiarity
devs

Fixed
outcome
measure

Peng et al. [10] ↑ 56% faster ✗ ✗ ✗ ✓

Weber et al. [18] ↑ 65% faster ✗ ✗ ✗ ✓

Cui et al. [17] ↑ 26% output ✗ ✓ ✓ ✗

Paradis et al. [11] ↑ 21% faster ? ✗ ✗ ✓

Gambacorta et al. [15] ↑ 55% output ✗ ✓ ✓ ✗

Yeverechyahu et al. [16] ↑ 37% output ✗ ✓ ✓ ✗

Our study ↓ 19% slower ✓ ✓ ✓ ✓

Table 3: Overview of key studies measuring the impact of AI tools on software development produc-
tivity. Paradis et al. [11] does not report the model(s) used internally.

Literature Comparison Table 3 compares relevant studies that measure the impact of AI tools on
software developer productivity, along key dimensions that distinguish our results from prior work.

17

Figure 7: Developers are slowed down more on issues where they self-report having significant
prior task exposure, and on issues where they self-report having low external resource needs (e.g.
documentation, reference materials). We only collected this data for the latter half of issues com-
pleted in the study—this is why we have a smaller number of issues for our baseline slowdown
estimate. See Section D.3 for details on how we estimate heterogeneous treatment effects.

Other relevant literature typically does not investigate the impact of AI systems more capable than
GPT-4 (which as of mid-2025 isn’t itself close to the frontier), and does not (in any individual study)
analyze tasks in the wild, with experienced developers, using outcome measures that correspond
directly with productivity and that are fixed before treatment assignment.

C Factor Analysis

C.1 Factors driving slowdown

We observe 5 setting-specific factors that contribute to our observed slowdown, summarized in Ta-
ble 1.

C.1.1 Over-optimism about AI usefulness (Direct productivity loss)

On AI-allowed issues, developers are not required to use AI tools—they are instructed to use AI
assistance as much or as little as they would find helpful. Given this, we might expect the percentage
change in issue completion time due to AI to be lower-bounded at 0%—if a developer is aiming to
be as productive as possible, and they see that they are being slowed down by an AI tool, we’d expect
them to not continue using the AI tool.

However, developers have an overoptimistic picture of how AI affects their productivity, both before
and after they complete issues. Before starting issues, developers forecast that using AI will reduce
completion time by 24%. After completing issues, developers estimate that using AI reduced their
issue completion time by 20% on average. This overoptimistic view may lead developers to overuse
AI assistance, despite its negative effect on their productivity.

C.1.2 High developer familiarity with repositories (Raises developer performance)

We might expect that AI assistance is less helpful on tasks where developers are already highly
skilled, for example, because they have completed similar tasks previously, or because they have all
of the knowledge and skills required already.

Before developers complete each issue, they score how much “Prior Task Exposure”, they have
from 1 - 5, where 1 means “Never done this type of task before”, and 5 means “I am an expert at
this type of task”. We consider ratings of less than or equal to 3 to mean they have low prior task
exposure, and ratings higher than 3 to imply high prior task exposure (we selected this cutoff to
achieve roughly balanced ratings).

Figure 7 gives moderate evidence that developers are slowed down more on on issues where they
have high prior task exposure.

18

Developers also rate (before issues are randomized and completed) “External Resource Needs” from
1 - 3, where 1 means “I need extensive documentation / reference material / googling to complete this
task” and 3 means “I could complete this task entirely from memory and experience.” We consider
ratings of less than or equal to 2 to mean they have low external resource needs, and ratings higher
than 2 to imply high external resource needs (we selected this cutoff to achieve roughly balanced
ratings). Figure 7 presents moderate evidence that developers are slowed down more on issues where
they need fewer external resources.

Qualitatively, developers note that AI is particularly helpful when working on unfamiliar issues, and
less helpful when working on familiar ones.

One developer working with unfamiliar datasets found that AI was helpful in answering “general
questions about e.g. EICAR.” Another developer noted that Cursor was “super helpful in figuring
out how to write a [frontend test.] I didn’t know how to do this before and on my third time asking
cursor for help with it, it came up with this solution.” Another developer, working with Git hooks,
noted that “Given that it was my first time with Git hooks, without AI the implementation would’ve
taken me [3 additional hours].” Sometimes, portions of one’s own codebase can be as unknown as
a new API. One developer noted that “cursor found a helper test function that I didn’t even know
existed when I asked it how we tested deprecations.”

On the other hand, developers note that AI is much less helpful on issues where they are expert. One
developer notes that “if I am the dedicated maintainer of a very specialized part of the codebase,
there is no way agent mode can do better than me.”

Broadly, we present moderate evidence that on the issues in our study, developers are slowed down
more when they have high prior task exposure and lower external resource needs. We hypothe-
size that analogously, AI helps our developers less compared to existing literature [10; 11] because
our developers have substantially more experience on their respective repositories (5 years and
1,500 commits on average). This would be consistent with the experience/familiarity effects ob-
served in Noy and Zhang [23]; Cui et al. [17].

C.1.3 Large and complex repositories (Limits AI performance)

Developers qualitatively note LLM tooling performs worse in more complex environments. One
developer says “it also made some weird changes in other parts of the code that cost me time to
find and remove [...] My feeling is the refactoring necessary for this PR was “too big” [and genAI]
introduced as many errors as it fixed.” Another developer comments that one prompt “failed to
properly apply the edits and started editing random other parts of the file,” and that these failures
seemed to be heavily related to “the size of a single file it is attempting to perform edits on.”.

We hypothesize that analogously to these size and complexity effects within our study, AI broadly
helps our developers less compared to existing randomized controlled trials (RCTs) measuring
speedup from AI tools because of the overall size and complexity of the repositories included—
participating repositories are on average about 10 years old and contain >1,100,000 lines of code,
compared to the more greenfield projects completed in Peng et al. [10], Paradis et al. [11], and We-
ber et al. [18]. This would be consistent with existing literature studying the effects of environment
complexity on AI performance [3; 38; 39].

C.1.4 Low AI reliability (Limits AI performance)

When using Cursor, developers accept <44% of the generations.13 When developers do not accept
generations, we observe a mix of reattempting with different prompts, and giving up (i.e. reverting
the proposed changes).

This relatively low reliability qualitatively results in significant wasted time, as developers often
spend time reviewing, testing, or modifying AI generated code before they decide to reject it. One
developer notes that he “wasted at least an hour first trying to [solve a specific issue] with AI”
before eventually reverting all code changes and just implementing it without AI assistance.

13We were not able to collect this data from 3 developers who used their own pre-existing Cursor Pro sub-
scriptions, so this statistic excludes them.

19

Figure 8: Developers who report that they were experimenting with AI or using AI as much as
possible see greater slowdown than developers who report using AI as they normally would. See
Section D.3 for details on how we estimate heterogeneous treatment effects.

Developers further note that even when they accept AI generations, they spend a significant amount
of time reviewing and editing AI generated code to ensure it meets their high standards. 75% report
that they read every line of AI generated code, and 56% of developers report that they often need to
make major changes to clean up AI code—when asked, 100% developers report needing to modify
AI generated code. One developer comments that AI generated code resulted in “more to fix up, in
terms of code conventions, code style”. Another developer says “I accept [AI generated code] [...]
then I feel like I do a lot of simplifying its code.”

Quantitatively, on the subset of 44 issues with valid labeled screen recordings, we find that when AI
is allowed, developers spend approximately 9% of their time reviewing and cleaning AI generated
outputs when working with AI.

C.1.5 Implicit repository context (Limits AI performance, Raises developer performance)

In software development, developers often rely on their own undocumented knowledge of the code-
base to assist design and implementation decisions. In our study, developers often note that AIs lack
this tacit codebase knowledge, resulting in less useful AI outputs. One developer notes that AI often
acts like a new contributor to the repository, and that “AI doesn’t pick the right location to make the
edits.” Another developer notes that while “we [..] know the data that will interact with the code,
but the model doesn’t know the data. It doesn’t know we need to take care of this weird case of
backwards compatibility and [thus] keep this specific line. And this is very hard to give as [context
to the model].”.

We hypothesize that the size and maturity of the included repositories increases the amount of tacit
knowledge that experienced developers rely on when completing their work—because AI systems
may have less access to this knowledge, it may be more difficult for them to assist experienced
developers on these issues.

C.2 Factors with an unclear effect on slowdown

We consider 9 factors that have mixed/unclear directional effect on speedup, including effects for
which we have no evidence in either direction.

C.2.1 Experimentally driven overuse of AI (Experimental artifact)

As this study is not blinded, developers’ awareness of the study may have changed their behavior.

Developers were instructed to use AI to whatever degree they thought would make them most pro-
ductive. After the study’s conclusion, we ask developers which best describes their AI usage: “using
AI as normal”, “experimenting with AI” or “using as much AI as possible.” Figure 8 doesn’t show
a clear effect when estimating speedup broken down by these labels.

20

Figure 9: Speedup on issues broken down by whether the developer completing the issue reports
scope creep when using AI. See Section D.3 for details on how we estimate heterogeneous treatment
effects.

However, qualitatively, several developers reported that their participation in the experiment some-
times led to them overusing AI in ways that were unproductive.

C.2.2 Unrepresentative task distribution (Experimental artifact)

The issues are intended to be as similar as possible to those that would have been worked on if this
study never took place. Developers who completed the study noted that issues were “completely
standard” and that “there’s nothing I did for this that I wouldn’t have done otherwise.”, and manual
review of issues confirm that the issues represent normal work on each repository.

However, the issues completed during this study do not capture all contributions developers make to
these repositories. As developers were asked to break larger issues into ≤ 2 hour issues if possible,
developers note that issues were smaller than average than their normal work. One developer com-
ments “It was the same set of tasks, but sampled from the small end.” Furthermore, developers make
other types of contributions to these repositories—the work of resolving issues does not capture PR
review, or design discussions, for example.

These selection pressures may have biased issues to be better scoped and more clearly defined than
the average work that developers complete on repositories. Existing literature would suggest that
this means AIs would perform better on these issues, which we might expect to speed up developers
(in contrast to our observed slowdown). However, better scoped issues may also be issues where
these expert developers perform better as well, making AIs less relatively useful, so the net effect of
this selection is unclear.

C.2.3 AI increasing issue scope (Experimental artifact)

A key design decision for our study is that issues are defined before they are randomized to AI-
allowed or AI-disallowed groups, which helps avoid confounding effects on the outcome measure
(in our case, the time issues take to complete). However, issues vary in how precisely their scope
is defined, so developers often have some flexibility with what they implement for each issue. This
raises a concern for measuring the impact of AI assistance on developer productivity—if developers
expand the scope of their work when using AI tools, even if those issues take longer their produc-
tivity might be similar to AI-disallowed issues (because they are getting more done).

We survey developers after the study period has ended, and ask if on average, they believed that they
experienced scope creep when working on AI-allowed issues. Figure 9 shows percentage change
in issue completion time due to AI broken down by responses to this question—interestingly, we
see that developers who report scope creep on AI-allowed issues are actually slowed down less than
developers who don’t report experiencing scope creep. This is evidence against the hypothesis that
slowdown is caused by developers increasing the scope of AI-allowed issues, however, it relies on
developer self-reports of scope creep, which may be unreliable or subjective.

21

Qualitatively, some developers self-report that AI does not change their implementations. One de-
veloper notes that due to his experience and knowing how changes should be made, “the scope is
not variable.” Another developer notes that AI would not change his approach to an issue, as “AI
was much more suggestable than I was.”

On the other hand, some developers note that the scope of issues sometimes changes as a result of
AI. One developer comments “If I didn’t have AI, I probably [...] not gone so ham on nailing the
correct Python tooling.” Another developer notes “some of [code changes] were a little tedious, and
so I am like is this going to [be worth it without AI], but with AI [I make the changes].”

Quantitatively, we observe that developers write 47% (p = 0.16) more code per hour of AI-
disallowed forecasts, on issues where AI is allowed. This is not statistically significant, and as
discussed in section 1, an increase in the number of lines of code does not necessarily correspond to
greater productivity or a larger scope, because code can be more verbose but functionally equivalent.
Furthermore, this metric contains additional noise because files can be programatically generated by
automated systems, and we’re unable to collect the exact lines of code written by the human (or
human plus AI).

C.2.4 Bias from issue completion order (Experimental artifact)

Each developer typically has several issues that are randomized in batches, and can then choose
the order they complete these issues. This could cause a bias in completion times. For example, if
developers prefer to complete AI-disallowed issues when they have more energy, they may choose
to do do AI-disallowed issues first more often than AI-allowed issues, which could cause AI-allowed
issues to take longer even if AI would have decreased the implementation time without this ordering
effect.

While we receive no qualitative reports from developers that they prioritize issues in this way, we
do not have access to developers entire workflows, so we cannot fully rule out this effect.

C.2.5 Trading speed for ease (Direct productivity loss)

One explanation for developers continuing to use AI assistance throughout the study despite it de-
creasing their productivity is that they are trading productivity for ease—perhaps the development
experience when using AI tools like Cursor is so much cognitively easier that developers choose to
use it even though they are slower on average. We qualitatively receive mixed reports from devel-
opers regarding how effortful work with AI tools is relative to work without them. One developer
notes that completing issues when using AI “felt like less effort.” Another developer noted that he
“didn’t really think about some of the problems” when using AI. However, another developer noted
that there was “no effort or approach difference [with AI].”

Quantitatively, we track whether developers continue using Cursor after the experiment period ends,
and find that 69% of developers continue using it after the study period has ended. This impressive
retention rate suggests that developers are getting some significant value from using Cursor, and it
seems unlikely this is solely a result of miscalibration on their productivity.

C.2.6 Low quality initial pull requests (Direct productivity loss)

One possible explanation for AI-allowed issues taking longer than AI-disallowed issues could be
that developers submit lower quality pull requests when using AI (e.g. because they do not fully
review or fix lower quality AI-generated code), and then have to spend extra time after PR review
making improvements/fixes.

We observe a statistically insignificant difference in the mean post-review implementation time (9
and 15 for AI-disallowed and AI-allowed issues respectively).

However, qualitatively, AI-allowed PRs do not appear to be of lower quality. Because developers
have typically spent many years contributing to their respective repositories, they anticipate the high
quality PR review standards; 100% of developers report that they “only submit high quality PRs”.

22

Figure 10: We evaluate speedup on various subsets of developers’ prior experience with GitHub
Copilot, Cursor, and web LLMs (e.g. ChatGPT). Developers with prior Cursor experience (who
use Cursor in the study) are slowed down similarly to developers without prior Cursor experience,
and we see no difference between developers with/without Copilot or web LLM experience. See
Section D.3 for details on how we estimate heterogeneous treatment effects.

Figure 11: We see similar slowdown percentages when excluding up to the first eight AI-allowed
issues developers work on, suggesting that developers lacking basic skills around using AI effectively
does not contribute substantially to the slowdown result. See Section D.3 for details on how we
estimate heterogeneous treatment effects.

C.2.7 Below-average use of AI tools (Limits AI performance)

Although all developers have used AI tools previously (most have used LLMs for tens to hundreds
of hours), only 44% of developers have prior experience with Cursor. A priori, we could imagine
significant learning effects for these tools, such that individuals with experience using these tools
may be slowed down less than individuals without this experience.

Figure 10 breaks down the percentage change in issue completion time due to AI by different lev-
els of developers’ prior experience using AI tools. We don’t see meaningful differences between
developers based on prior experience with AI tooling.

We further check if developers appear to get better at using AI over the course of the experiment
(Figure 11). There does not appear to be a meaningful difference in slowdown when excluding up to
the first eight AI-allowed issues each developer completes. This is evidence against the hypothesis
that slowdown is caused by our developers lacking basic skills in AI tool use that can be developed
in a short period of time.

To more directly assess the impact of learning effects and AI tool use skill on productivity, we
estimate speedup on issues bucketed by the number of hours of Cursor experience the developer had

23

Figure 12: Speedup on issues where developers have varying hours of experience using Cursor
(including prior Cursor experience, plus their usage during the study period). We don’t see large
differences across the first 50 hours that developers use Cursor, but past 50 hours we observe pos-
itive speedup. However, we are underpowered to draw strong conclusions from this analysis. See
Section D.3 for details on how we estimate heterogeneous treatment effects.

when working on the issue (Figure 12). Up to 50 hours of Cursor experience, it broadly does not
appear that more experience reduces the slowdown effect. However, we see positive speedup for the
one developer who has more than 50 hours of Cursor experience, so it’s plausible that there is a high
skill ceiling for using Cursor, such that developers with significant experience see positive speedup.
As developers spend more time using AI assistance, however, their development skills without AI
assistance may atrophy. This could cause the observed speedup to mostly result from weaker AI-
disallowed performance, instead of stronger AI-allowed performance (which is the question we’re
interested in). Overall, it’s unclear how to interpret these results, and more research is needed to
understand the impact of learning effects with AI tools on developer productivity.

Broadly, we qualitatively observe that developers use Cursor at a level comparable to how well
the authors use Cursor for software development, which is largely unsurprising, given we provide
training at the beginning of the study, and periodic feedback throughout (Section G.3). While we
don’t expect that developers are using AI assistance optimally, we do not find evidence that they are
below-average in AI tool use ability.

C.2.8 AI generation latency (Limits AI performance)

All else equal, faster AI generations would result in developers being slowed down less. Qualita-
tively, a minority of developers note that they spend significant time waiting on AI to generate code.
One developer notes that for “larger refactorings, [AI generation] takes a couple of minutes”. An-
other developer notes that when waiting on AI generations, he “spends time on Twitter”. However,
not all developers feel majorly affected by this time, for example, one developer notes that he was
“never waiting for more than like 20 seconds.”

Quantitatively, on the subset of 44 issues with valid labeled screen recordings, we find that when AI
is allowed, developers spend approximately 4% of their time waiting on AI generated outputs when
working with AI. This percentage is small, but non-trivial.

Particularly given the recent benefits seen from inference/test-time compute, there are likely funda-
mental tradeoffs between AI output latency and performance/reliability. In general, we can imagine a
pareto frontier between these variables (either for a given model, or between models/architectures)—
but the optimal point on this frontier plausibly depends both on the domain, and on how exactly
humans use AI tools to substitute for their labor.

C.2.9 Suboptimal elicitation (Limits AI performance)

Cursor is one of the most widely used AI-enabled IDEs. Developers use Cursor agent/composer
and Cursor chat in 55% and 48% of AI-allowed issues (respectively), indicating they are reasonably
often using Cursor’s best (at the time) scaffolding.

24

However, normal usage of Cursor’s AI tools does not typically involve sampling more than a few
thousand tokens from models. Recent literature shows that model performance can improve signifi-
cantly with respect to the number of tokens sampled at inference time [40], so it’s natural to wonder
if the lack of speedup is driven by limited token spend.

We note that limited token spend would not explain the difference between our results and other
work that find positive speedup for programming tasks [10; 17].

However, we can imagine alternative elicitation strategies that effectively use much higher token
spend, like sampling many trajectories in parallel from agents and using an LLM judge (or e.g. self-
consistency [41]) to filter to the output most likely to be useful for the human. We do not provide
evidence about these elicitation strategies, as developers in our study typically use Cursor and web
LLMs like chatGPT, so it remains unclear how much effect these strategies would have on developer
productivity in the wild.

C.3 Factors unlikely to contribute to slowdown

We provide suggestive evidence that 6 factors are not contributing to observed slowdown, summa-
rized in Table 1.

C.3.1 Unfamiliar development environment (Experimental artifact)

Developers qualitatively report VSCode and Cursor to be equivalent development experiences, when
AI features in both are turned off14. Thus, to make sure they don’t use AI features by accident when
AI is disallowed, some developers choose to use VSCode for AI-disallowed issues, and Cursor for
AI-allowed issues.

However, some developers do use different IDEs entirely for issues where AI is disallowed, and use
Cursor for AI-allowed issues. If developers are substantially more productive in these other envi-
ronments, e.g. because they are more familiar with keyboard shortcuts or have special personalized
tooling set-up, then even if AI is helpful, they might be slowed down substantially because they
aren’t used to using Cursor.

We find evidence that this does not contribute to slowdown. When we restrict to developers who are
using comparible IDEs between treatment conditions, we observe a slowdown of 24%.

Furthermore, if Cursor was difficult to use effectively, we might expect to see learning effects as de-
velopers personalize it and learn its features. To measure this, we estimate the percentage speedup as
developers use Cursor for different lengths of time. Figure 12 does not show meaningful differences
in slowdown across the first 50 hours of Cursor usage. Combined with the fact that developers rarely
note having any issues or bottlenecks using Cursor, this suggests that Cursor being an unfamiliar en-
vironment does not substantially contribute to slowdown.

C.3.2 Cheating or under-use of AI (Experimental artifact)

Observing screen recordings provides evidence that slowdown is not driven by developers not using
AI when they are allowed to, or because they cheat and do use AI when they are not allowed to.

On the subset of 44 manually labeled valid screen recordings where AI is allowed, we find that
developers do not use AI in only 16.4% of them, indicating that AI assistance was typically used on
issues where AI was allowed.

We observe 3 specific instances where AI tools were used on AI-disallowed issues, out of 54 labeled
AI-disallowed screen recordings, suggesting an overall cheating rate of ∼ 6%. At least one instance
of observed cheating appears to be accidental.

C.3.3 Issue dropout (Experimental artifact)

One potential source of bias are selection effects with respect to which issues are completed by
developers. For example, if developers can choose which issues they want to complete after the

14This is unsurprising because a) Cursor is a fork of VSCode, and b) Cursor has features to transfer settings,
keyboard shortcuts, and other configuration information directly from VSCode to Cursor.

25

issues are assigned as AI-allowed or AI-disallowed, they may choose to complete only easy AI-
disallowed issues (given their expectation that AI will speed them up). This would make AI-allowed
issues harder on average, which could contribute to slowdown.

To avoid this, developers commit to completing all issues after they are assigned to AI-allowed and
AI-disallowed buckets. However, as developers do not work on these repositories as their full-time
job, sometimes they fail to meet these commitments. 3 developers fail to complete 7 total issues
assigned to AI-disallowed, and 4 developers fail to complete 6 total issues assigned to AI-allowed.

However, this does not appear to be driving results. When we subset developers to those who have no
uncompleted AI-disallowed issues, we still find a slowdown of 42%. When we subset to developers
who have no uncompleted AI-allowed issues, we find a slowdown of 21%. And when we subset to
developers with no dropout on any issues, we find a slowdown of 21%.

Separately, 24 issues were intentionally dropped by developers, the leading reasons being: the issue
ended up being too hard to implement (11 issues), the issue was no longer relevant to their work
by the time they got to it (5 issues), or the issue was implemented by another developer instead (3
issues). If developers made the choice to drop these issues because they were not allowed to use AI,
this selection effect could bias results. However, when asked about de-prioritized issues, developers
confirm that the issues are not de-prioritized due to AI usage. We manually review these intentionally
dropped issues to confirm that they are not dropped for reasons related to their condition assignment.

C.3.4 Non-robust outcome measure (Experimental artifact)

Imputation of Post-Review Time on Unreviewed Issues In Section 2.3, we describe how we im-
pute a small number (∼ 12%) of post-review implementation times for issues that were not reviewed
by the completion of the study. These 27 issues are balanced between AI-allowed and AI-disallowed
conditions, and the forecasted times to complete are similar, which substantially reduces the likeli-
hood of strong selection effects biasing results.

To quantitatively check the robustness of our post-review time imputation, we re-run our speedup
estimation in two ways: 1) we impute AI-allowed post-review implementation times as a constant
1 hour (while AI-disallowed post-review time is imputed as 0), and 2) we impute AI-disallowed
post-review implementation times as one hour (while AI-allowed is set to 0). This is intended
to simulate the case if post-review times for unreviewed issues were systematically biased for one
condition or the other, and because the mean post-review implementation times are 15 and 9 minutes
for AI-allowed and AI-disallowed issues respectively, this would represent a very extreme bias.
When imputing using this extreme bias, we still do not observe substantial impacts on our speedup
estimates in either case (14% and 23% slowdowns when using AI, respectively).

Self-Reported Times To validate that there is not significant bias in self-reported times that con-
tributes to slowdown, we also measure the slowdown percentage computed using the total length of
screen recordings associated with a given issue, instead of using self-reported times. We observe a
25% slowdown when using total screen recording time instead of the self-reported time spent, which
is similar to the 24% we observe when estimating speedup from self-reported implementation times
on the same subset of issues.

C.3.5 Non-robust estimator (Experimental artifact)

We evaluate the slowdown implied by alternative estimators, in addition to the regression-based
estimator that yields our primary results.

In Figure 13 we report the slowdown observed when using four alternative estimators other than our
baseline regression described in Appendix D. We compare a simple ratio estimator, which reports

Mean(time with AI allowed)
Mean(time with AI disallowed) − 1 (Section D.4, as well as three other regression-based estimators with
different covariate specifications (described in Figure 13’s caption).

The alternative estimators all report similar results, suggesting that slowdown is robust to our par-
ticular estimator specification.

26

Figure 13: In addition to a basic ratio estimator, we also evaluate speedup when regressing
log(implementation time) on whether AI is allowed; whether AI is allowed and the log forecast
of implementation time with AI-allowed; and whether AI is allowed, the log forecast of implementa-
tion time with AI-disallowed, and developer fixed effects.

C.3.6 Non-frontier model usage (Limits AI performance)

Given the significant rate of progress in AI (particularly in software/coding domains), one explana-
tion for slowdown could be that developers used older, less capable models on AI-allowed issues.

This does not appear to be the case. Across the 44 valid labeled AI-allowed loom videos, we find
that developers used Claude 3.7 Sonnet (thinking mode), Claude 3.7 Sonnet, and Claude 3.5 Sonnet
in 25%, 34%, and 23% of issues respectively. Other models used are GPT-4o (11%), Gemini 2.5
Pro (3%), and o1 (2%). Developers prompt no AI model 16.4% of the time. These percentages do
not include AI autocomplete, which developers use on the vast majority of AI-allowed issues.

Most issues were completed in February and March 2025, before models like Claude 4 Opus or
Gemini 2.5 Pro were released.

D Empirical Strategy

D.1 Regression

For each issue i we observe the realised completion time Ti > 0, a binary treatment flag AIi ∈
{0, 1}, and the developer’s ex-ante forecast of how long the task would take without AI, denoted
T̂NoAI
i > 0.

We estimate the log-linear model

log Ti = α+ β AIi + δ log T̂NoAI
i + εi, (1)

via ordinary least squares and report homoskedastic standard errors15. Random assignment of AIi
guarantees consistency of β̂ for β = E[log T |AI = 1]− E[log T |AI = 0].

We include forecasts as a control variable because they serve as a proxy for issue difficulty and
are highly predictive of completion times. This substantially increases our statistical power without
introducing bias, as forecasts were elicited prior to treatment assignment and thus cannot be affected
by treatment status.16

Figure 14 displays regression diagnostics associated with this specification.
15We do not find heteroskedasticity in our data and, empirically, heteroskedastic standard errors have almost

identical width to the homoskedastic errors we report.
16We do not generally include developer fixed effects because they explain minimal variation in the outcome

conditional on forecasts. Section C.3.5 displays estimates from a regression specification including developer
fixed effects.

27

Figure 14: Regression diagnostics associated with the regression specification in equation (1).

D.2 From log ratios to speedup

Taking conditional expectations of equation (1) given treatment status and forecast:

E[log T |AI = 1, T̂NoAI] = α+ β + δ log T̂NoAI (2)

E[log T |AI = 0, T̂NoAI] = α+ δ log T̂NoAI (3)

Therefore, β = E[log T |AI = 1, T̂NoAI]−E[log T |AI = 0, T̂NoAI] represents the average treatment
effect on the log scale, conditional on forecast.

To convert to a speedup measure, we note that:

exp(β) =
E[T |AI = 1, T̂NoAI]

E[T |AI = 0, T̂NoAI]
(4)

S = exp(β)− 1 (5)

(Step (4) holds provided the disturbance εi is independent of both AIi and T̂NoAI
i and that E[eεi]

exists.17)

Then under standard regularity assumptions (which our diagnostics suggest hold) our OLS estimator
β̂ is normally distributed N (β, σ2) for some σ which we can estimate using it’s standard error SE[β̂].
This lets us construct a 95% confidence interval for β in the usual way:

CI95% =
[
β̂ − 1.96 · SE[β̂], β̂ + 1.96 · SE[β̂]

]
(6)

17Because Ti = eαeβ AIi (T̂NoAI
i)δ eεi , taking expectations conditional on AIi and T̂NoAI

i gives E[T |AI =

j, T̂NoAI] = e(α+βj) (T̂NoAI)δ E[eεi]. The common factor E[eεi] cancels when we form the ratio of these
conditional means, yielding E[T |AI = 1, T̂NoAI]

/
E[T |AI = 0, T̂NoAI] = exp(β).

28

As S = exp(β) − 1 is a monotonic function of β we can construct a confidence interval for S by
simply applying the function to the endpoints of β’s confidence interval:

CI95% =
[
eβ̂−1.96·SE[β̂] − 1, eβ̂+1.96·SE[β̂] − 1

]
(7)

D.3 Heterogeneous treatment effects

To test for differential treatment effects across subgroups, we estimate models with interaction terms.
For a binary characteristic Xi (e.g., prior Cursor experience), we estimate:

log Ti = α+ β1 AIi + β2 Xi + β3 (AIi ×Xi) + δ log T̂NoAI
i + εi (8)

Taking conditional expectations:

E[log T |AI = 1, X = 0, T̂NoAI]− E[log T |AI = 0, X = 0, T̂NoAI] = β1 (9)

E[log T |AI = 1, X = 1, T̂NoAI]− E[log T |AI = 0, X = 1, T̂NoAI] = β1 + β3 (10)

Thus, the treatment effect for the X = 0 group is β1, while for the X = 1 group it is β1 + β3. We
similarly transform these to speedup measures: SX=0 = exp(β1)−1 and SX=1 = exp(β1+β3)−1.

To construct confidence intervals for these subgroup effects, we test linear hypotheses of the form
LTθ = c. For the X = 1 group effect, LT = [0, 1, 0, 1, 0] selects β1 + β3. Using homoskedastic
standard errors, the Wald statistic:

W =
LT θ̂ − c√
LT V̂ L

∼ N (0, 1) (11)

where V̂ is the variance-covariance matrix. This asymptotic normality allows us to construct confi-
dence intervals using the same critical values. For the linear combination β̂1 + β̂3:

CI95% =
[
(β̂1 + β̂3)− 1.96 · SE[β̂1 + β̂3], (β̂1 + β̂3) + 1.96 · SE[β̂1 + β̂3]

]
(12)

We then apply the same transformation as above to obtain confidence intervals for S:

CI95% =
[
e(β̂1+β̂3)−1.96·SE[β̂1+β̂3] − 1, e(β̂1+β̂3)+1.96·SE[β̂1+β̂3] − 1

]
(13)

D.4 Ratio estimator

For robustness, we also compute a simple ratio-of-means estimator: Ŝratio = T̄AI-allowed
T̄AI-disallowed

− 1, where
T̄ denotes the sample mean of implementation times. We obtain 95% confidence intervals using
quantiles of Ŝratio from a pooled bootstrap.

We use this same estimator to calculate aggregate percentage change in implementation times im-
plied by developer forecasts. Note that this procedure is distinct from averaging over percentage
changes in implementation time per-task.

D.5 Participant post-study estimator

After the study period, developers estimate post hoc their speedup from AI across their completed
issues. To make these estimates comparable to their forecasts (which they provide before each issue
is randomized to allow or disallow AI), we compute a weighted arithmetic mean of the ratios of
times they report. Each developer’s ratio ri is weighted proportionally to the number of issues ni

they completed:

29

r̄w =

∑N
i=1 niri∑N
i=1 ni

(14)

We calculate the standard error of this weighted mean using the weighted variance formula:

SE(r̄w) =

√√√√√∑N
i=1 wi(ri − r̄w)2(∑N

i=1 wi

)2 (15)

where wi = ni are the issue-based weights. The 95% confidence interval around the weighted mean
is then derived using the standard normal approximation: r̄w ± 1.96× SE(r̄w).

E Other Analysis

E.1 Balance and proportions checks

Characteristic AI-allowed AI-disallowed Difference p-value
(n=136) (n=110)

AI-disallowed forecasted time 116 (80) 106 (63) 9 0.28
AI-allowed forecasted time 87 (62) 82 (53) 4 0.56

Table 4: Balance table comparing forecasted issue completion times between AI-allowed and AI-
disallowed groups. Means are shown with standard deviations in parentheses. P-values are from
two-sided Welch t-tests. There is no meaningful difference in forecasted difficulty, indicating suc-
cessful randomization.

Treatment Group Intended Proportion Actual Proportion Sample Size

AI-allowed 50% 55.3% (3.2%) 136
AI-disallowed 50% 44.7% (3.2%) 110

P-value 0.10
Table 5: Treatment assignment proportions. Actual proportions are shown with standard errors in
parentheses. P-value is from chi-square test for deviation from intended 50/50 allocation.

Table 4 confirms that randomization leads to balanced average difficulty between AI-allowed and AI-
disallowed groups. Table 5 shows that the difference in the proportion of issues randomly assigned to
AI-allowed and AI-disallowed groups is not statistically significant at common p-value thresholds.

E.2 Per-developer speedup and forecast calibration

Figure 15 shows the relationship between the times developers forecast issues will take without AI
(which we interpret as a forecast of issue difficulty), and how long the issues actually end up taking
them (colored by whether AI was allowed or disallowed for each issue). We can see that the median
forecasted implementation time is almost identical across treatment conditions, while AI-allowed
issues take longer on average than AI-disallowed issues (note the log axes).

We estimate speedup per developer (Figure 16) using our standard methodology for estimating het-
erogeneous effects (Section D.3). 75% of developers experience slowdown.

Interestingly, despite developers reliably forecasting incorrectly that AI-allowed issues will take
less time, they are still calibrated in a relative way on the speedup from AI (Figure 17). Specifically,
on issues that developers predict significant speedup (i.e. ≥ 33% or the top tertile of forecasted
speedup), developers are not slowed down by AI, and slowdown monotonically decreases as the
forecasted speedup increases.

30

Figure 15: Distributions of issue implementation time with AI allowed and disallowed as a function
of the forecasted implementation time without AI.

Figure 16: Speedup estimates per developer. Developer IDs correspond to the developer’s rank by
number of issues in our data.

E.3 Randomization

There were 25 issues early in the study that were randomized using a block randomization scheme
intended to increase statistical power. Developer issue lists ended up being too small for this strategy
to be viable, so we abandoned it early on in favor of simply using a simulated fair coin flip.

Excluding these issues does not affect our result—we still find a slowdown of 20%. Given this, we
include these issues in our analysis and results to increase statistical power.

31

Figure 17: Speedup broken down by forecasted speedup between and within developers (developers
forecast how long they expect each issue to take with and without AI). Speedup cutoffs are chosen
to make bins approximately similarly sized. Tertiles are imbalanced because forecasted speedup
contains duplicates that we assign to a single bin. Developers experience less slowdown on issues
that they forecast high speedup. See Section D.3 for details on how we estimate heterogeneous
treatment effects.

Figure 18: Average minutes spent on different high-level activities when completing issues with AI-
allowed vs. AI-disallowed.

E.4 Fine-Grained Screen Recording Labels

Figures 18, 19, and 20 present various breakdowns of the time developers spend on different activi-
ties as they work. See Section 2.4 and Section G.8 for more detail on screen recording labels.

E.5 Expert forecasts

We display summary statistics regarding expert forecasts of our result. Recall that we originally
elicited expert forecasts for E[T | AI=0]

E[T | AI=1] , but here report results on the E[T | AI=1]
E[T | AI=0] − 1 scale we use for

Figure 1.

32

Figure 19: Average minutes spent across 27 fine-grained activity categories.

Figure 20: Percentage of time spent on fine-grained activities when AI is allowed vs. disallowed.

E.6 Other treatment effects

Figure 21 displays estimates using alternative outcome measures or subsets of our data. Figure 22
displays treatment effects by the calendar month in which an issue implementation was started.

F Open-Source Development and AI Tooling Primers

F.1 Open-Source Development

An open source software (OSS) project is typically defined by a repository, which is a collection of
code and assets. The repository for the popular pandas Python package, for example, can be found
here.

Expert Group N Mean Min P25 P50 P75 Max

Economics 34 -38.7 -80.0 -56.0 -37.5 -26.3 81.8
Machine Learning 54 -38.0 -88.9 -55.5 -33.3 -20.2 0.0

Table 6: Expert Forecast Statistics

33

https://github.com/pandas-dev/pandas

Figure 21: Speedup by alternative outcomes measures or subsets of our data. The Bernoulli ran-
domization subset excludes the 25 issues randomized using a block randomization scheme (see Sec-
tion E.3).

Figure 22: Speedup by month issue implementation started, as measured by first commit. Con-
fidence intervals for January and May effects are cut-off for readability; the lower bounds are at
approximately 1800%. See Section D.3 for details on how we estimate heterogeneous treatment ef-
fects.

Any developer who contributes to a given repository is known as a contributor. Active contributors
for the pandas library are listed here.

Contributors to an OSS project work off of issues, which implicitly or explicitly describe tasks (bugs
to fix, features to build, etc.) tracked within the repository. A few example pandas issues include
BUG: to dict(orient=‘dict’) does not convert np.nan to None in Pandas 2.2.3

(link) and ENH: Enable nsmallest/nlargest on object dtype. (link).

Contributors resolve an issue by submitting a pull request (PR), which is a proposal to make
changes to the repository. For example, this PR to the pandas repository fixes a bug by
Clip[ing] corr edge cases between -1.0 and 1.0 , addressing the corresponding issue

BUG: .corr() values significantly higher than 1. (link).

After a contributor opens a PR, another contributor (often a maintainer) will review the PR. PR
review consists of reading and testing the code changes while paying attention to correctness, per-
formance, and repository-specific code style. The reviewer may leave comments requesting changes;
in the above PR, the author was asked if other functions needed a similar bug fix (link).

After a PR is reviewed, the original contributor may make changes to address review comments.
Multiple rounds of review may occur, although this is rare. After all review comments are addressed,
the PR is merged into the repository. This results in the issue being marked as completed or closed.

Though this description of open-source software development is a reasonable default, diversity
abounds. Some projects have many contributors, others only have a single contribute; some contrib-
utors do in-depth reviews, others merge in PRs without review at all.

34

https://pandas.pydata.org/about/team.html
https://github.com/pandas-dev/pandas/issues/61323
https://github.com/pandas-dev/pandas/issues/61166
https://github.com/pandas-dev/pandas/pull/61154
https://github.com/pandas-dev/pandas/issues/61120
https://github.com/pandas-dev/pandas/pull/61154#pullrequestreview-2706439865

Stars indicate the number of developers who have expressed interest in the repo. Forks indicate the
number of copies of the repository that have been made by developers so they can make their own
modifications. Stars and forks can be seen as measures of repo popularity. The pandas library has
45,200 stars and 18,400 forks, making it an extremely popular repository.

F.2 Primer on AI Tooling

F.2.1 Web Interfaces

Many companies training large language models (LLMs) offer web-based user interfaces wherein
users can chat with AIs. For example, users can interact with OpenAI models at chatgpt.com,
Google DeepMind models at gemini.google.com, and Anthropic models at claude.ai. During our
study period, popular LLMs offered by these developers include OpenAI’s GPT-4o, GPT-4.5, o1, o3-
mini, o3, and o4-mini, Google DeepMind’s Gemini 2.5 Flash and Gemini 2.5 Pro, and Anthropic’s
Claude 3.5 Sonnet (New) and Claude 3.7 Sonnet (although many/most issues were completed before
the more recent models were released).

F.2.2 Cursor

Cursor is an integrated development environment (IDE) or ‘code editor’—a desktop application
from which developers write and otherwise interact with code. It is a fork of the most popular code
editor, Visual Studio Code (VSCode) [42].

Cursor being a fork of VSCode enables developers to transfer their workflows from VSCode to
Cursor to retain existing extensions and settings that they are most familiar with. Low switching
costs are deepened by strong similarities in user interface and features between the two IDEs.

Relative to VSCode, Cursor is notable for having well-integrated AI tools, in particular “Cursor
Chat” (previously separated into “agent mode” and “chat mode”) and performant AI-powered auto-
complete features.

F.2.2.1 Chat and Agent Mode

Cursor Chat allows users to prompt LLMs to make changes from inside the IDE. This LLM has tools
enabled allowing it to autonomously explore your codebase, read documentation, run commands,
and edit files. In practice, this LLM will generate code attempting to satisfy your prompt, and then
show an in-file highlighted view of code changes that users can choose to accept or reject.

(Previously “agent mode” was very similar to Cursor Chat, and “chat mode” was more similar to
LLM web-based user interfaces, except model-agnostic and existing inside the IDE.)

The AIs that users typically interact with in Cursor are functionally identical to those they might
interact with via web-based user interfaces, except for their additional access to relevant information
in the repository, and often additional tool use that allows them autonomously run, test, and debug
code they (or others) have written.

F.2.2.2 AI Autocomplete

Traditional IDEs have autocomplete functionality that suggests code completions as you type, pri-
marily by fuzzy-matching on existing defined names in your codebase. For example, if you have a
defined function called add two numbers and then later begin typing add tw , traditional auto-
complete will suggest that you finish the completion with o numbers .

AI autocomplete is a feature in both VSCode and Cursor that uses an LLM to suggest edits to code
as you write, and goes well-beyond just suggesting previously defined names. For example, if you
started by defining a function with the signature add two numbers(a, b): , AI autocomplete
would suggest a completion like return a + b .

35

https://chatgpt.com/
https://gemini.google.com/
https://claude.ai/

G Recruitment and Onboarding

Open-source developers are recruited through a multi-stage process to select for active contribu-
tors to repositories that had more than 500 stars. Initial outreach was conducted via professional
networks, ML-focused communities (Reddit’s r/Python, r/MachineLearning), and through GitHub
profiles.

• GitHub profiles are found by searching GitHub for the 250 most popular repositories, as
well as those tagged with: ai, llm, deep-learning, neural-networks.

• Contributors to these repositories are filtered to exclude those who had committed fewer
than than five times in the previous three months.

51 developers filled out a preliminary interest survey, and we further filter down to about 20 devel-
opers who had significant previous contribution experience to their repository and who are able to
participate in the study. Several developers drop out early for reasons unrelated to the study.

These developers are then given access to Cursor Pro. We conduct a live 30-minute call with each
developer where we provide a data collection template, answer basic questions about the experiment
and their instructions, and give them training on how to use Cursor. Developers are considered
trained once they can use Cursor agent mode to prompt, accept, and revert changes to a file on their
own repository.

Additionally, for the duration of the study, we periodically provide feedback to developers on their
implementation notes and video recordings. We occasionally email developers with tips on how to
use Cursor more effectively if we notice low-hanging fruit (e.g. reminding developers to explicitly
tag relevant files when prompting agents) from reviewing their screen recordings.

G.1 Incentivization Scheme

We pay developers $150 per hour to participate in the study. Developers spend the majority of this
time implementing issues, with fewer than five hours going to study overhead, including the on-
boarding call, check-in/feedback calls, the exit interview/survey, and the time they spend collecting
their lists of issues.

An alterative incentivization scheme could give developers bonuses for completed issues, to incen-
tivize developers to work as quickly as possible. However, this could cause developers to break
issues into smaller chunks (e.g. to increase the total number of issues they complete) or reduce their
quality standards to finish work more quickly, which could bias results. We expect that paying devel-
opers per hour overall has minimal effect on their behavior, beyond encouraging them to participate
in the study.

G.2 Developer Instructions and Survey Data

G.2.1 Developer Instructions

Overview

METR is seeking software engineers who regularly work on large open-source projects to
test the effectiveness of AI software engineering tools.

Apply here (bit.ly/ai-speedup-apply)

Eligibility:

You must:

1. Have at least 1 year of professional experience as a software engineer
2. Have at least 6 months experience as an active maintainer of the repository
3. The repository you work on must be:

36

https://cursor.com

(a) Open source
(b) At least 500 stars on GitHub or be manually reviewed by METR staff and

deemed a high-quality, mature codebase (we know many good code bases don’t
have a lot of stars)

(c) Have at least 3,000 lines of code (written by humans/in a major programming
language, data etc doesn’t count)

(d) Have some kind of list of projects to improve it which would take between a
few minutes to a few days, and which are relatively independent (i.e. a list of
issues to fix, a list of features you intend to add, a general kanban board, etc).
It’s ok if you make this list specifically for this experiment.

4. Nice-to-haves:
(a) The codebase is relevant to AI research and development or AI capabilities

Compensation:

1. The total time commitment from a participant is a minimum of 20 hours, but we are
interested in larger commitments.

2. We will pay you $150 per hour. Note that during this experiment you will be working
on tasks you’d already want to work on in your open source repository. We will be
slightly randomizing the order of these tasks as well as what AI tooling you can use
[note: we didn’t do this, and we clarified this with developers before they began
their work], but we don’t expect this to be a large impediment to your work.

3. This pilot study will last between 1-2 months, and we will limit funded development
hours around 40.

Wait, how does it work?

1. Engineers will start by selecting a set of issues/to-dos from their open source repos-
itories that they are looking to solve.

2. METR will then randomize these tasks into two buckets - on one set of issues, AI is
allowed, and on the other set of issues, AI won’t be allowed.

3. You’ll work through these issues in whatever order you want - just making sure to
only use AI when it’s allowed.

4. As a participant, you will be doing work of your choosing on a repository of your
choosing. This experiment will only change the order of tasks that you do and what
LLMs you can use (including potentially restricting you to no LLMs)

5. We are very flexible on when you complete these tasks. You can choose the date and
time that works best for you (including weekends!).

6. See more details in the Detailed Timeline.

Why this work matters:

1. AI models are becoming increasingly capable and automating parts of the work-
force. We want to understand if or when it could reshape software engineering so
we can predict and prepare for its effects.
(a) In particular, we want to know when models might greatly speed up AI R&D

work, creating a feedback loop that would greatly accelerate AI progress
2. Models are traditionally evaluated using simple, artificial benchmarks, where they

are tested on their ability to answer multiple choice questions or fix some basic test
cases in a Python library. These benchmarks:
(a) Fail to measure how much models actually speed up engineers in their real

workflow, the main real-world use-case for AI right now - and this is exactly
what we’re attempting to measure with this experiment.

37

(b) Are typically artificial or have many tasks with no right answer, and lack the
nuances and detail of real-world software engineering work

(c) Often require building “scaffolding” for the agents to autonomously write code
etc. This scaffolding can be hard to develop and often means the AIs get stuck
in places because of silly scaffolding issues. If a human is using the LLM, the
scaffolding matters less (and is already widely commercially available) and the
human can help get the LLM unstuck

(d) Get saturated quickly because the space between “a model can make any
progress on a task at all” and “the model can do almost perfectly at the task”
is small. Having the model speed up humans might address this issue because
even very weak models can provide some human speedup and even very power-
ful ones are currently a ways away from being able to replace humans entirely.

3. Although it isn’t a primary motivation of our work, we expect you might personally
find it useful to know if AI actually speeds you up!

Detailed timeline

Welcome to the METR Human Uplift Pilot!

This document contains an in-order list of the steps in this Uplift Study. Please feel free to
leave any comments on the document.

The Steps

Step 1: We have an introduction call

We’ll have an introduction call, where I can give you an overview of the experiment and
answer any questions you may have. You can book an introduction call here.

If you’re interested in moving forward, we’ll schedule a kickoff call (see below) for later that
week

Step 2: You collect issues

Once you’re onboard, it’s time to make an issues list. The issue list can come in any format:
an email, a Google Sheet, a Github project board. Make it whatever format is easiest for you.
Each issue should contain:

1. A description. I don’t need to understand this, so feel free to keep it short.
2. A label: bug fix, new feature, exploration, or refactor.
3. Two time estimates:

(a) No AI Time estimate:if you didn’t use any AI tools, how long would this take
you?

(b) AI Time Estimate: if you did use AI tooling to the best of your ability, how
long would this take you?

4. Task Expertise:
(a) Prior Task Exposure: Rate your previous experience with this specific type of

task.
i. 1: Never done this type of task before

ii. 2: Have seen this type of task done but never done it myself
iii. 3: Have attempted this type of task once before
iv. 4: Have done this type of task multiple times before
v. 5: I am an expert at this type of task

(b) External Resource Needs: how much documentation/reference material/re-
search will you need to complete this task?
i. 1: I need extensive documentation / reference material / googling to com-

plete this task.

38

ii. 2: I would need an occasional documentation / reference check / googling
to complete this task.

iii. 3: I could complete this task entirely from memory and experience.
5. Ideally, these issues should be less than 4 hours. If you can break them into ≤2

hour tasks, this would be ideal. If larger issues can reasonably be broken down into
smaller PRs, feel free to take big issues and break them down into relevant steps.

6. You should have at least 10 issues, and aim for at least 20 hours of issues, and up to
40 hours.

Step 3: You send me issues, I bucket them

Once your issue list is done, you can send it to me. I’ll randomize this issue list into two
buckets:

1. AI bucket: you can use AI to help you on these issues
2. No AI Bucket: you cannot use AI on these issues.

Step 4: We have a kickoff meeting During the kickoff meeting, I’ll give you:

1. The bucketed issue list
2. Access to Cursor Pro (if you don’t already have it) as well as a basic training
3. Access to Loom so you can record your screen.
4. The Code of Conduct and Consent form
5. Additionally, I can answer any final questions you might have about this experiment.

Step 5: You work on issues

You’re ready to start now. This should mostly look exactly like your normal work.

1. You can work on the issues in any order you like.
2. You can work using any tools you like.
3. However, if an issue is labeled “No AI”, then don’t use any AI tooling.

You’ll record the data described here as you implement these issues.

Note: we will not share Loom videos without any humans outside of METR. We may watch
them for quality control or use private LLMs to analyze these videos.

Step 6: Checkin Call We’ll have one quick check in call to see how you’re doing, resolve
any issues, and make sure we’re making progress.

Step 7: Get Paid At the end of your issues, you’ll get paid. You’ll get $150/hour for the
number of hours you worked on tasks and created your issues - with a limit of 2 hours for
issue creation.

Data to Collect As you implement the issues in this project with and without AI, here is the
additional information that you should collect.

Implementation Notes The most important implementation note: if you’re working on an
issue where AI is allowed, please record which models you use, and where you use them.

Other information is really useful to record as well. Please record any useful notes about the
implementation that might be interesting for this study. For example:

1. “Cursor implemented most of this code, with just a simple prompt from me.”
2. “Cursor edited my package.json and I didn’t notice, which caused me to lose 30

minutes fixing dependencies.”

39

3. “Not being able to use AI was tough, as there was a lot of boilerplate could I could
have easily auto-generated”

Link to PR Link to the final PR that you implemented to solve this issue.

Note that if you implement a fix to multiple issues within one PR, just make sure to tag which
commits correspond to which changes in that one PR.

Screen Recording Link Link to a screen recording of the implementation of this issue. We
ask that participants record their screen for all of the issues that they work on.

Time Tracking We ask that you track two separate time categories: initial implementation
time and post-review implementation time. These two time categories should sum to the
“total amount of time it took for you to complete this feature to the point that it was mergable
into the codebase.”

Initial Implementation Time How long did it take you to get the PR up for review?

Note that this should only include active time on your part. So for example, if you spent 2.5
hours over a week working on an issue, and then get a PR up and request a review, your initial
implementation time should be 2.5 hours.

This chunk should include the time you spent:

1. Understanding the issue.
2. Implementing new code.
3. Writing tests or checking your work
4. Getting a PR up for review.
5. Etc.

Post-Review Implementation Time

How long did it take to get the PR ready to merge post-first review?

Note that this also includes active time on your part. So if you get a PR up for review, have to
wait three days for a review, and then have to make 20 minutes of changes as a result of the
review, the post-review implementation time would be only 20 minutes.

This time bucket might include include:

1. Time spent fixing code because of requested review changes.
2. Time resolving merge conflicts.

NOTE: If you did not get a review on your PR, or if the PR just approved your changes, then
this time bucket would be zero minutes!

Perceived Effort We ask you to rate the effort required to solve this issue on a scale of 1-5:

1. Minimal effort: this issue was extremely easy to implement, and required very little
effort or concentration. For example: making a simple text change to a webpage,
refactoring code following a well-established pattern, copying an existing solution.

2. Below-average effort: this issue was easy to solve, and required less effort than the
average issue. For example: creating a new feature with a well-established design,
writing unit tests for well-encapsulated functionality.

3. Average effort: this issue required an average amount of effort to implement, and
was not notably different from other issues. For example: creating a new feature
with some novel components, tracking down a reproducible logic bug.

40

4. Above-average effort: this effort was hard to solve, and required more effort and
concentration than the average issue. For example: Refactoring legacy code with
limited tests, implementing complex algorithms or data structures.

5. Maximum effort: this issue was extremely difficult to solve, and required very heavy
effort and concentration. For example: re-architecting a major system redesign,
debugging critical and complex production bugs with limited information.

G.3 Onboarding call and Cursor Training

All participating developers started the study with a 30 minute introduction and onboarding call.
Before the call, developers were asked to set up an account on screen recording software (Loom),
install and setup Cursor for their codebase, and read through the data they would be asked to collect
over the course of the study.

As all developers had some previous experience with VSCode, developers were all able to setup and
use Cursor on their codebases with little overhead. On the onboarding call, developers were given a
basic training on Cursor agent mode to ensure they could:

• Create a new agent mode instance on their own codebase.
• Add a relevant file to the context window of the agent.
• Prompt the agent to do make a change to this file.
• Accept changes that the agent suggested to this file.
• Revert changes that they had previous accepted, undoing the agents changes.

Developers were also given a verbal overview of the data they were asked to collect, described in
Section G.2.1, and given a chance to ask any questions they had about this data.

G.4 Mid-experiment check-in calls

All developers were offered periodic 15 minute check-in calls to assess their progress, answer any
questions they had about the study, and ensure they were on track to complete issues in a timely
manner. Most developers had between 1-4 check-in calls over the course of the experiment. These
calls also provided an opportunity to ask developers about their experience with using AI at that
point in the study.

G.5 Exit Interview

All participating developers were interviewed at the termination of the study, during a 30 minute - 1
hour exit interview. Interview time ranged from 1 day to ∼ 6 weeks after developers finished their
last issue, depending on available scheduling.

The exit interview was unstructured, and designed to encourage developers to share their qualitative
experience during the study. The following outline was followed during the exit interview, but not
all questions were asked to all developers, depending on relevance.

Prior Usage:

Collect the prior [AI, Cursor, etc.] usage information we have to confirm it in detail.

Data Audit

Look through their tracked issue data and confirm any data cleanup with them.

Exit interview:

1. On task selection: how did the tasks you worked on compare to the average tasks
you do on this open source repository? How were they different?

41

2. During the study:
(a) Did you use the same IDE for AI and non-AI tasks? Why?
(b) Was your experience in this study majorly different from your standard devel-

opment on this repo? Why?
3. On amount of effort:

(a) Do you feel using AI or not affected how much effort you used on a given
issue?

(b) How did your level of focus on these issues compare to normal work on this
repo?

(c) How did time tracking or screen recording affect your working?
4. On AI code-cleaning:

(a) How good did you find the AIs outputs?
(b) How much cleaning did you do on the AI outputs?
(c) What is the code quality bar in your repo?

5. On scope-creep:
(a) Are there any issues that you gave up on because they were harder than you

expected and so not worth it?
(b) Do you feel like the “size” of issues changed as a result of using AI? Specifi-

cally, do you feel like the issues were variable sized, and AI pushed you to go
bigger?

6. Going forward:
(a) Do you plan to use AI tools going forward?
(b) Is this more than you planned to use them before the study?
(c) Did you increase the amount of AI that you used outside of the study as a result

of the study?
(d) How did the study affect your belief in AI tools?

7. On your AI skill level:
(a) How confident are you that you use AI effectively now vs. at the start of the

study? Do you feel you have improved at using AI?
(b) Did you notice an improvement in your ability to get useful work from the AI?

i. What specific strategies worked here?
8. On AI effecting your work:

(a) Did you find yourself sitting around and waiting on AI to generate code?
(b) Did you notice a change in idle or distracted time as a result of using AI or not

AI?
9. On the effectiveness of AI

(a) Before the study:
i. What effect did you think AI tools would have on your time to complete

issues?
ii. What were the primary reasons you thought this?

(b) During the study?
i. How much do you believe AI changed your time to complete your issues?

ii. Specifically: Where did AI seem to speed you up? Where did AI seem to
slow you down?

10. Most effective AI tools:
(a) What AI usage pattern feels the most effective for you?

i. Cursor vs. a web-browser? Why?
ii. What model do you prefer, why?

42

11. Study Experience
(a) Would you participate in this study again? Why or why not?
(b) What is one thing you liked about this study, and one thing we could improve?
(c) Anything else you wished I asked about?

G.5.1 Exit Survey

METR Experiment Exit Interview

1. This form will take you about 15 minutes to complete.
2. Please follow the instructions closely for each question.
3. Do your best to answer accurately.

Thank you for your participation - this is the last step in study participation!

Questions:

1. What is your name?
2. How many hours had you spent using LLMs before the start of this experiment?

(a) 0 hours
(b) 1 - 10 hours
(c) 10 - 100 hours
(d) 100 - 1000 hours
(e) > 1000 hours

3. How many hours had you used Cursor before the start of this experiment?
(a) 0 hours
(b) 1 - 10 hours
(c) 10 - 100 hours
(d) 100 - 1000 hours
(e) > 1000 hours

4. By the end of this study, how would you rate your skill level at Cursor?
(a) Very Bad
(b) Below Average
(c) Average
(d) Above average
(e) Very Good

5. On this repository, I typically make code changes through pull requests. True/False.
6. On this repository, I typically check my own code to make sure it’s high quality.

True/False.
7. On this repository, another developer typically reviews my code to ensure high code

quality. True/False.
8. On this repository, I typically attempt to match repository style guidelines with my

contributions. True/False.
9. This repository has a high quality bar for code contributions. True/False.

10. I typically only submit high quality PRs to this repository. True/False.
11. How much did AI decrease or increase the time it took you to complete the issues as

part of this experiment?

43

(a) If using AI resulted in you completing issues 2x faster, put 2.
(b) If using AI resulted in you completing issues 2x slower, put .5 (because 1/2 =

.5)
(c) If using AI did not change how long it took you to complete issues, put 1.

12. During this study, what best describes how you read AI generated code that you
included as part of your implementation?
(a) I don’t read AI generated code I use. I just check if it’s outputs are correct.
(b) I typically skim AI generated code I use to see if it’s correct.
(c) I typically read every line of AI generated code I use to check it’s correct.

13. During this study, what best describes how you edit AI generated code that you used
as part of your implementation?
(a) I usually take AI code as-is, without making edits.
(b) I usually make minor changes to AI generated code (like deleting comments or

changing formatting).
(c) I usually make major changes to AI generated code (like deleting pieces of

code, adding new features, or refactoring code)

G.6 Participant Dropout

Over the course of the study, we stopped collecting work from three developers. Two of them were
because the repository they contributed to paused development indefinitely, and the third developer
was due to widespread cheating in the first set of issues they contributed. These developers were
compensated fully for their work as part of the study, and we exclude their issues from all results.

G.7 Developer and Repository Statistics

Repository names and descriptions for repositories for which developers did not give consent to
share their names are redacted.

Dev Repository Months Since Commit Commit AI-allowed AI-disallowed
First Commit Count Rank Issues Issues

2 mito-ds/mito 30 3000 3/30 13 11
3 stdlib-js/stdlib 300 30000 3/300 9 12
4 ghc/ghc 30 300 30/3000 8 12
5 haskell/cabal 30 30 30/300 11 8
6 stdlib-js/stdlib 30 300 3/300 11 7
7 flairNLP/flair 30 3000 3/300 12 5
8 jsdom/jsdom 300 300 3/300 8 9
9 HypothesisWorks/hypothesis 30 300 3/300 11 6

10 devflowinc/trieve 30 300 3/30 10 5
11 scikit-learn/scikit-learn 30 300 30/3000 4 7
13 EleutherAI/gpt-neox 30 30 3/300 5 5
16 huggingface/transformers 30 300 3/3000 1 1

1 Anonymized 300 3000 3/300 15 13
12 Anonymized 30 3000 30/300 9 2
14 Anonymized 30 300 3/30 4 4
15 Anonymized 30 300 3/30 5 3

Table 7: Maintainer statistics for the study participants, sorted by total number of issues. The table
shows representative values (nearest to 3 × 10x) and percentages rounded to nearest bucket (10%,
30%, 50%, 70%, 90%) to preserve anonymity while maintaining relative scale.

44

https://github.com/mito-ds/mito
https://github.com/stdlib-js/stdlib
https://github.com/ghc/ghc
https://github.com/haskell/cabal
https://github.com/stdlib-js/stdlib
https://github.com/flairNLP/flair
https://github.com/jsdom/jsdom
https://github.com/HypothesisWorks/hypothesis
https://github.com/devflowinc/trieve
https://github.com/scikit-learn/scikit-learn
https://github.com/EleutherAI/gpt-neox
https://github.com/huggingface/transformers

Repository Stars Forks Committers LoC Age AI-allowed AI-disallowed
(years) Issues Issues

stdlib-js/stdlib 5264 843 128 8M 9 20 19
mito-ds/mito 2468 180 10 700k 3 13 11
ghc/ghc 3134 720 1008 1M 19 8 12
haskell/cabal 1676 714 532 300k 21 11 8
flairNLP/flair 14213 2119 278 60k 7 12 5
jsdom/jsdom 21082 1738 350 1M 15 8 9
HypothesisWorks/hypothesis 7910 616 355 100k 12 11 6
devflowinc/trieve 2343 203 68 800k 2 10 5
scikit-learn/scikit-learn 62566 26025 3164 400k 15 4 7
EleutherAI/gpt-neox 7251 1068 132 100k 4 5 5
huggingface/transformers 146580 29562 2956 2M 6 1 1
Anonymized 30000 3000 300 300k 30 15 13
Anonymized 300 30 30 30k 3 9 7
Anonymized 300 300 300 300k 30 9 2

Table 8: Repository statistics for the study, sorted by total number of issues. The table shows
representative values (nearest to 3× 10x) for anonymized repositories.

G.8 Screen Recordings

The screen-recording labeling process is time-intensive. As a result, screen recording labeling was
started early in the data collection process, and to maximize the number of fully-labeled recordings,
shorter recordings were prioritized first. Additionally, many developers choose to not record their
screen if they were making a small set of changes due to a review. These factors may bias estimates
of time allocation.

The following instructions were given to coordinate labeling screen recordings with fine-grained
activity labels.

Overview

1. As part of an experiment we’re running, we’re labeling the loom videos that devel-
opers recorded of them implementing PRs on large open source repositories.

2. The goal of this labeling is to understand how these developers actually spend their
time when they are programming – so the labels include things like “writing code”
or “reading code” or “reading docs.”

3. A very important piece for us to understand is how they use and interact with AI.
This practically means special labels around their use of Cursor Composer / Agent
Mode.

Requirements: You’re a good fit for labeling this data if:

1. You know how to program well, and when watching someone program over their
shoulder can figure out what they are working on.

2. You have used Cursor Composer before, and know how that works!

Compensation

1. We’ll pay standard per hour rates for image labeling.
2. We’ll be checking 1/10 of the submissions. If your timing labels are sufficiently

accurate (close to our hand-checked solutions), we’ll give you a $250 bonus.

How to Label:

1. First, scroll down and read the labels below. Feel free to leave comments if you have
any questions about these.

45

https://github.com/stdlib-js/stdlib
https://github.com/mito-ds/mito
https://github.com/ghc/ghc
https://github.com/haskell/cabal
https://github.com/flairNLP/flair
https://github.com/jsdom/jsdom
https://github.com/HypothesisWorks/hypothesis
https://github.com/devflowinc/trieve
https://github.com/scikit-learn/scikit-learn
https://github.com/EleutherAI/gpt-neox
https://github.com/huggingface/transformers

2. Then, open the tracking sheet:
(a) Claim one of the unclaimed videos in the “To Label” sheet by putting your

name in one of the columns. Go in-order, so we get shorter videos first.
(b) Then, make a new tab, and copy over the ‘Template‘ tab. Name the new tab as

the initials of the person who made the recording, followed by a dash, and then
the issue id number.

3. Open the loom video link:
(a) You probably need access to METR’s loom account for this; if you do not have

access, please ask us and we’ll add you!
(b) If you have access to METR’s loom account but do not have access to the

particular loom video you opened from the sheet, please do not request access.
Just mark this in the sheet, and move on to the next video.

4. Take notes using this tool. It makes Loom note taking much easier, and means you
don’t have to leave the loom page!
(a) The default rate is 5, but you can adjust this with ‘rate 2‘ to make it slower.
(b) You can drag this note taking app around the screen, and it works in fullscreen

mode. Click instructions at the bottom to see more commands!
(c) Note: please try and make the start and end time of your notes correspond to

the actual start and end times of the things users are doing. This might require
rewinding the video!

5. After you’re done watching the video and taking notes, type ‘done‘ and copy the
results into the sheet.

6. Note: if the video is >20 minutes long, copy your notes out in 20 minute chunks, to
make sure that your labels are as accurate as possible.

7. Then, go through the ‘Label‘ column of the sheet, and label each chunk of time with
the columns below.

8. Then, go through the ‘AI Use Label‘ and ‘AI Type Label‘ column and label any of
the AI usage with what the developer is using the AI for as well as the model/UI
being used.

The Labels

Label accuracy is very important for this data work. As such, it requires a fair bit of critical
thought about what the user is really engaged in.

If you’re not sure what the user is doing, please put “unknown” as the label. We can always
go back and fill things in, but only if you note this. You can also leave a comment to the side
of the row describing what’s confusing to you!

If you think that there’s a better label for things than one provided, feel free to add it + tag me
in a comment on top of it. I can then add it to the list here :)

The Labels Most Common

1. reading issue: the dev is reading the issue that they are planning to implement a fix
for as a part of this loom video.

2. writing code: the dev is actively writing code. They might also be reading a bit or
navigating around, but mostly they are editing/writing code on the page. (Note that
writing testing code is counted differently).

3. reading code: the dev is primarily reading existing code. They might be navigating
through the codebase to find specific things, but in practice they are reading.

4. reading docs: the dev is reading documentation. Potentially of their own codebase,
potentially of some other codebase/tool. It’s not code they are reading.

46

5. writing docs: the users are writing documentation. This could include release notes
or a documentation page.

6. writing tests: the user is writing testing code, rather than writing some other type of
code.

7. test running tests: is actually running the testing code, and looking at the results.
8. test running ci: is running or waiting on CI checks that are running on Github/Git-

lab.
9. test manually checking: testing some solution, but doing this by hand (either by

writing some code, or looking at some artifact/output).
10. replicating bug: replicating a bug, normally the bug described in the initial issue.
11. running debugger: if the user running the debugger, then note this here.
12. compiling: waiting on some code to compile.
13. setup: running some setup process (e.g. opening their IDE, installing extensions,

etc).

Git Related Things:

1. branching: creating a new branch, and adding on to it.
2. committing: adding files or writing a commit message. Some folks try hard on

these!
3. pr: getting up a PR and potentially writing a PR message.
4. git: some other misc. git operation (e.g. if they are viewing Git diffs, or something).

Misc:

1. thinking: the user is not AFK, but appears to be thinking through what they are
going to do next.

2. unrelated: the user is doing something unrelated, like watching a youtube video or
changing their music.

3. paused: the user appears to have stepped away from their computer.
4. communicating with teammates: for example, the user switches to slack or discord

and asks a question.
5. broken: something is wrong with the loom video.

On using AI tooling

Note: it can be a bit hard to label AI generated usage. The key details here are to describe
the full flow of how the user writes a prompt, waits, and then either accepts or rejects it – and
then what they do after.

For a good example of what this should look like, see this labeling.

1. writing prompt: the user is writing a composer prompt.
2. waiting on generation: the user is waiting on the AI to generate code or a response.
3. reading generation: the user is spending time actually reviewing the suggestions the

AI has made.
4. generation taken: the user takes the suggestion from the AI, and it turns out to be

useful / they don’t ditch it in the future.
5. generation rejected: the user does not take the suggestion from the AI, or takes the

suggestion and then reverts back to before they took the suggestion. In other words,
they don’t use the AI generated code because it’s broken.

47

6. ai code cleaning: if the user takes a suggestion from the AI, and then spends
time cleaning that code, then we label this not as writing code but instead as
ai code cleaning. This includes changing spacing, minor refactors, etc. As long
as the users keeps the bulk of the code, this is considered a generation taken.

Feel free to also use ‘ai docs cleaning‘ or ‘ai commit cleaning‘ if this is what the user is
cleaning up.

AI Use Label: We also ask that you fill out the AI use label column to describe

1. new feature: the user is using AI to extend functionality of the codebase.
2. bug fix: the user is prompting the AI to fix a bug in the existing codebase.
3. code search: the user is using the AI to search their codebase for some code / im-

plementation detail.
4. tests: the user is having the AI generate code for testing reasons.
5. docs: the user is using the AI to write docs. Could include readme, or git commit

messages.
6. question: the user has a question (e.g. one they could ask google) that they are

adding here.
7. integration: the user is integrating some code with an external system, and so the

code-gen is primarily for understanding or integrating with that system.
8. refactoring: improving code, without extending the code’s functionality or fixing

bugs

NOTE: if you think there are other composer usages that this better fits into: please feel free
to just write what you think best describes what the user is doing here!

AI Labels: We also ask that you mark three columns that describe where / how the user is
using AI:

1. AI Model Label: The model being used E.g. “3.7 Sonnet” “3.5 sonnet” “o1” “o1-
preview” “gpt4.5”

2. AI UI Label: The UI being used E.g. “cursor composer” “cursor chat” “web UI”
(the respective LLM providers’ chat website)

This should co-exist with the AI Use Label above. So, for example, a segment of video in
which someone is writing/reading cursor compose might have AI Use Label “new feature”
and AI Type Label “Sonnet 3.7, cursor composer”

FAQ:

1. How accurate do the timestamps need to be? Roughly correct. It’s ok if the times-
tamps are off by a few seconds on each end, but in general you should try and avoid
large (e.g. 10+ second) errors.

2. When is a user writing code vs. reading code? These are often interleaved. In
practice, if the user is writing code for >50% of the chunk of time, this is writing
code – only if they are reading code for like >30 seconds is it really like a concrete
“reading code” time.

3. I have never used Cursor composer. You’re probably not a great fit for this labeling,
in this case.

4. I am not sure how to label things. If you are confused about how things should
be labeled (e.g. there’s some weird cursor flow you don’t understand where a user
accepts code changes, and then later reverts), just label things as “unknown” and we
can come back to it.

48

G.9 Instructions Given to Expert Forecasters

Supplementary Information for METR AI speedup study survey

METR is currently running a field experiment measuring how AI tools impact open source
developer productivity.

The TL;DR is that we recruit experienced developers who contribute to popular open source
projects, randomize their tasks to having no AI or AI allowed, and measure the ratio between
the time it takes a human to complete tasks with AI vs. without AI. The study aims to measure
speedup in conditions that closely mirror normal software development.

In this supplementary information document, we first describe two pieces of relevant back-
ground: the structure of open source software development, and AI tooling. (If you are highly
familiar with open source software development or cursor agent mode you should probably
skip the respective sections.) We then describe the experiment in more detail: how we sam-
pled developers and repositories, the tasks developers work on, how developers participate in
the study, and finally how we intend to estimate speedup due to AI.

(We are only part-way through running the study, so do not yet know the final result our-
selves.)

Background

[Section F.2 was then included.]

Experiment

Contributor recruitment

Open-source contributors were recruited through a multi-stage process to select for active
contributors to repositories that had more than 500 stars.

1. Initial outreach was conducted via professional networks, ML-focused communities
(Reddit’s r/Python, r/MachineLearning), and through GitHub profiles.
(a) GitHub profiles were found by searching GitHub for the 250 most popu-

lar repositories, as well as those tagged with: ai, llm, deep-learning, neural-
networks.

(b) Contributors to these repositories were filtered to exclude those who had com-
mitted less than five times in the previous three months, and then emailed.

2. Interested contributors (n=50) filled out a preliminary survey to assess:
(a) Years of software development experience
(b) The repositories they contribute to

All contributors who planned to contribute to repositories with more than 500 stars were
offered an introductory call to provide an overview of the study timeline and parameters.
31 calls were conducted, with half of developers being filtered out for a lack of previous
contribution experience or because the timeline didn’t work.

The remaining 16 developers were then given access to Cursor Pro. We had a 30-minute call
with each developer where we set them up with a data collection template, answered ques-
tions, and trained them on Cursor. Developers were considered trained once they could use
Cursor agent mode to prompt, accept, and revert changes to a file on their own repository.
94% of developers noted that they had used web-based LLMs as part of their development
workflow before participating in our experiment. Rates of past usage of Visual Studio Code,
Github Copilot, and Cursor are 63%, 56%, and 25% respectively [note: these were prelimi-
nary numbers, and are lower than the true values reported in the paper].

All participating repositories are listed below.

49

[Table 8 was then included.]

Issues

Each contributor maintained a list of issues to work on as part of this study. Contributors
were asked to select issues as they would during normal development on this study, with the
caveat that they should break issues that were likely to take > 4 hours into sub-issues that
take ≥ 2 hours if possible.

The issues are intended to be as similar as possible to those that would have been worked on
if this study never took place.

After collecting this issue list, each issue was randomized to either AI-allowed or AI-
disallowed conditions. If AI is allowed, developers can use any AI tools they so choose,
including no AI tooling if they deem it not helpful to the problem. If AI is disallowed, no
generative AI tooling can be used.

Study Participation

Contributors completed issues much as they would outside of our experiment, with two im-
portant differences: they record their screen as they work, and they take implementation
notes post issue completion. (We use human-labelled video recordings covering the majority
of issues to confirm compliance.)

For the duration of the study, we periodically check in with developers and provide feedback
on their implementation notes and loom videos. We occasionally emailed developers with
tips on how to use Cursor more effectively if we notice some easy wins in their Loom videos.

Measuring speedup

We aim to measure the speedup factor due to AI, defined as:

S = mean(completion time with no AI) / mean(completion time with AI allowed).

S = 2 would indicate issues assigned to AI allowed taking half the time of issues assigned to
no AI (100% speedup); S = 1 would indicate that issues take the same time to complete with
and without AI being allowed (0% speedup); S = 0.5 would indicate that issues assigned to
AI allowed take twice the time of issues assigned to no AI (-50% speedup).

(We are asking you to predict S, i.e. the quantity taking value 2/1/0.5 rather than 100%/0%/-
50% in the examples.)

50

	Introduction
	Background

	Methodology
	Developers and Repositories
	Experimental Design
	AI Tools and Training
	Data Collection

	Effect Estimation
	Supplementary Data Collection

	Results
	Forecasts
	Activity Labels
	Factor Analysis

	Discussion
	Key Caveats

	Acknowledgments
	Author contributions
	Extended Discussion
	Factor Analysis
	Factors driving slowdown
	Over-optimism about AI usefulness (Direct productivity loss)
	High developer familiarity with repositories (Raises developer performance)
	Large and complex repositories (Limits AI performance)
	Low AI reliability (Limits AI performance)
	Implicit repository context (Limits AI performance, Raises developer performance)

	Factors with an unclear effect on slowdown
	Experimentally driven overuse of AI (Experimental artifact)
	Unrepresentative task distribution (Experimental artifact)
	AI increasing issue scope (Experimental artifact)
	Bias from issue completion order (Experimental artifact)
	Trading speed for ease (Direct productivity loss)
	Low quality initial pull requests (Direct productivity loss)
	Below-average use of AI tools (Limits AI performance)
	AI generation latency (Limits AI performance)
	Suboptimal elicitation (Limits AI performance)

	Factors unlikely to contribute to slowdown
	Unfamiliar development environment (Experimental artifact)
	Cheating or under-use of AI (Experimental artifact)
	Issue dropout (Experimental artifact)
	Non-robust outcome measure (Experimental artifact)
	Non-robust estimator (Experimental artifact)
	Non-frontier model usage (Limits AI performance)

	Empirical Strategy
	Regression
	From log ratios to speedup
	Heterogeneous treatment effects
	Ratio estimator
	Participant post-study estimator

	Other Analysis
	Balance and proportions checks
	Per-developer speedup and forecast calibration
	Randomization
	Fine-Grained Screen Recording Labels
	Expert forecasts
	Other treatment effects

	Open-Source Development and AI Tooling Primers
	Open-Source Development
	Primer on AI Tooling
	Web Interfaces
	Cursor
	Chat and Agent Mode
	AI Autocomplete

	Recruitment and Onboarding
	Incentivization Scheme
	Developer Instructions and Survey Data
	Developer Instructions

	Onboarding call and Cursor Training
	Mid-experiment check-in calls
	Exit Interview
	Exit Survey

	Participant Dropout
	Developer and Repository Statistics
	Screen Recordings
	Instructions Given to Expert Forecasters

